Patents Examined by Richard Booth
  • Patent number: 11690220
    Abstract: A flash includes a substrate. Two gate structures are disposed on the substrate. Each of the gate structures includes a floating gate and a control gate. The control gate is disposed on the floating gate. An erase gate is disposed between the gate structures. Two word lines are respectively disposed at a side of each of the gate structures. A top surface of each of the word lines includes a first concave surface and a sharp angle. The sharp angle is closed to a sidewall of the word line which the sharp angle resided. The sidewall is away from each of the gate structures. The sharp angle connects to the first concave surface.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: June 27, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Xiaojuan Gao, Chi Ren
  • Patent number: 11690223
    Abstract: Provided are a three-dimensional (3D) memory device and a manufacturing method thereof. The 3D memory device includes a gate stacked structure, a channel layer, a charge storage structure, an electrode layer and a capacitor dielectric layer. The gate stacked structure is disposed on a substrate and includes a plurality of gate layers electrically insulated from each other. The gate stacked structure has at least one channel hole and at least one capacitor trench. The channel layer is disposed on the sidewall of the at least one channel hole. The charge storage structure is disposed between the channel layer and the sidewall of the at least one channel hole. The electrode layer is disposed on the sidewall of the at least one capacitor trench. The capacitor dielectric layer is disposed between the electrode layer and the sidewall of the at least one capacitor trench.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: June 27, 2023
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chung Yi Lin, Chih-Hsiung Lee
  • Patent number: 11682731
    Abstract: Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 20, 2023
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand S. Murthy, Tahir Ghani, Anupama Bowonder
  • Patent number: 11682704
    Abstract: A method includes: forming a trench in a first major surface of a semiconductor substrate, the trench having a base and a side wall extending from the base to the first major surface; forming a first insulating layer on the trench base and side wall; forming a sacrificial layer on the first insulating layer on the trench side wall; forming a second insulation layer on the sacrificial layer; inserting conductive material into the trench that at least partially covers the second insulation layer; selectively removing portions of the second insulation layer uncovered by the conductive material; selectively removing the sacrificial layer to form a recess that is positioned adjacent the conductive material in the trench and that is bounded by the first insulation layer and the second insulating layer; and forming a third insulating layer in the trench that caps the recess to form an enclosed cavity in the trench.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Sylvain Leomant, Georg Ehrentraut, Maximilian Roesch
  • Patent number: 11676818
    Abstract: A laser irradiation apparatus (1) according to an embodiment includes an optical-system module (20) configured to apply laser light (L1) to an object to be irradiated, a shield plate (51) in which a slit (54) is formed, through which the laser light (L1) passes, and a reflected-light receiving component (61) disposed between the optical-system module (20) and the shield plate (51), in which the reflected-light receiving component (61) is able to receive, out of the laser light (L1), reflected light (R1) reflected by the shield plate (51).
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: June 13, 2023
    Assignee: JSW AKTINA SYSTEM CO., LTD
    Inventors: Daisuke Ito, Tamotsu Odajima, Ryo Shimizu, Masashi Machida, Tatsuro Matsushima
  • Patent number: 11678484
    Abstract: Disposed are a semiconductor structure, a manufacturing method thereof and a flash memory. The semiconductor structure includes a substrate, first isolation structures, a gate structure and an oxide layer. The first isolation structures define a first active area in a peripheral region of the substrate. The oxide layer is disposed on the substrate in the first active area and covered by the first isolation structures. The oxide layer and the first isolation structures define an opening exposing the substrate. The gate structure is disposed on the substrate in the first active area and includes a gate dielectric layer disposed in the opening and a gate disposed on the gate dielectric layer. The oxide layer is located around the gate dielectric layer. The width of the bottom surface of the gate is less than that of the top surface of the first active area.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: June 13, 2023
    Assignee: Winbond Electronics Corp.
    Inventors: Yao-Ting Tsai, Hsiu-Han Liao, Che-Fu Chuang
  • Patent number: 11670702
    Abstract: Provided is a thin film transistor including a highly-textured dielectric layer, an active layer, a gate electrode and a source/drain electrode that are stacked on a base substrate. The source/drain electrode includes a source electrode and a drain electrode. The gate electrode and the active layer are insulated from each other. The source electrode and the drain electrode are electrically connected to the active layer. Constituent particles of the active layer are of monocrystalline silicon-like structures. According to the present disclosure, the highly-textured dielectric layer is adopted to replace an original buffer layer to induce the active layer to grow into a monocrystalline silicon-like structure, such that the performance of the thin film transistor is improved.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: June 6, 2023
    Assignees: BEIJING BOE DISPLAY TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Bingqiang Gui, Lianjie Qu, Yonglian Qi, Hebin Zhao, Yun Qiu
  • Patent number: 11670500
    Abstract: A method of descumming a dielectric layer is provided. In an embodiment the dielectric layer is deposited over a substrate, and a photoresist is applied, exposed, and developed after the photoresist has been applied. Once the pattern of the photoresist is transferred to the underlying dielectric layer, a descumming process is performed, wherein the descumming process utilizes a mixture of a carbon-containing precursor, a descumming precursor, and a carrier gas. The mixture is ignited into a treatment plasma, and the treatment plasma is applied to the dielectric layer in order to descum the dielectric layer.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Yi Kao, Kuang-Yuan Hsu, Tze-Liang Lee
  • Patent number: 11670707
    Abstract: Some embodiments include an integrated assembly having a conductive structure, an annular structure extending through the conductive structure, and an active-material-structure lining an interior periphery of the annular structure. The annular structure includes dielectric material. The active-material-structure includes two-dimensional-material. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: David K. Hwang, John F. Kaeding, Richard J. Hill, Scott E. Sills
  • Patent number: 11665895
    Abstract: A method for manufacturing a semiconductor structure includes forming a first oxide layer on a wafer; forming a silicon nitride layer on the first oxide layer; forming a plurality of trenches; filling an oxide material in the trenches to form a plurality of shallow trench isolation regions; removing the silicon nitride layer without removing the first oxide layer; using a photomask to apply a photoresist for covering a first part of the first oxide layer on a first area and exposing a second part of the first oxide layer on a second area; and removing the second part of the first oxide layer while remaining the first part of the first oxide layer.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: May 30, 2023
    Assignee: eMemory Technology Inc.
    Inventors: Wein-Town Sun, Chun-Hsiao Li
  • Patent number: 11664427
    Abstract: A vertical semiconductor device may include a semiconductor substrate having at least one trench therein, and a superlattice layer extending vertically adjacent the at least one trench. The superlattice layer may comprise stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer. Each at least one non-semiconductor monolayer of each group of layers may be constrained within a crystal lattice of adjacent base semiconductor portions. The vertical semiconductor device may also include a doped semiconductor layer adjacent the superlattice layer, and a conductive body adjacent the doped semiconductor layer on a side thereof opposite the superlattice layer and defining a vertical semiconductor device contact.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: May 30, 2023
    Assignee: ATOMERA INCORPORATED
    Inventors: Robert John Stephenson, Richard Burton, Dmitri Choutov, Nyles Wynn Cody, Daniel Connelly, Robert J. Mears, Erwin Trautmann
  • Patent number: 11665896
    Abstract: A semiconductor device include a nonvolatile memory device, including a first well region formed in a substrate, a tunneling gate insulator formed on the first well region, a floating gate formed on the tunneling gate insulator, a control gate insulator formed on the substrate, a control gate formed on the control gate insulator, and a first source region and a first drain region formed on opposite sides of the control gate, respectively, and a first logic device, including a first logic well region formed in the substrate, a first logic gate insulator formed on the first logic well region, a first logic gate formed on the first logic gate insulator, wherein the first logic gate comprises substantially a same material as a material of the control gate of the nonvolatile memory device.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: May 30, 2023
    Assignee: KEY FOUNDRY CO., LTD.
    Inventors: Kwang Il Kim, Yang Beom Kang, Jung Hwan Lee, Min Kuck Cho, Hyun Chul Kim
  • Patent number: 11665909
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Patent number: 11651956
    Abstract: A method for removing a native oxide film from a semiconductor substrate includes repetitively depositing layers of germanium on the native oxide and heating the substrate causing the layer of germanium to form germanium oxide, desorbing a portion of the native oxide film. The process is repeated until the oxide film is removed. A subsequent layer of strontium titanate can be deposited on the semiconductor substrate, over either residual germanium or a deposited germanium layer. The germanium can be converted to silicon germanium oxide by exposing the strontium titanate to oxygen.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: May 16, 2023
    Assignee: PSIQUANTUM, CORP.
    Inventors: Yong Liang, Vimal Kumar Kamineni
  • Patent number: 11652099
    Abstract: A modular concept for Silicon Carbide power devices is disclosed where a low voltage module (LVM) is designed separately from a high voltage module (HVM). The LVM having a repeating structure in at least a first direction, the repeating structure repeats with a regular distance in at least the first direction, the HVM comprising a buried grid (4) with a repeating structure in at least a second direction, the repeating structure repeats with a regular distance in at least the second direction, along any possible defined direction. Advantages include faster easier design and manufacture at a lower cost.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: May 16, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Adolf Schöner, Nicolas Thierry-Jebali, Christian Vieider, Sergey Reshanov, Hossein Elahipanah, Wlodzimierz Kaplan
  • Patent number: 11646382
    Abstract: A junction barrier Schottky diode device and a method for fabricating the same is disclosed. In the junction barrier Schottky device includes an N-type semiconductor layer, a plurality of first P-type doped areas, a plurality of second P-type doped areas, and a conductive metal layer. The first P-type doped areas and the second P-type doped are formed in the N-type semiconductor layer. The second P-type doped areas are self-alignedly formed above the first P-type doped areas. The spacing between every neighboring two of the second P-type doped areas is larger than the spacing between every neighboring two of the first P-type doped areas. The conductive metal layer, formed on the N-type semiconductor layer, covers the first P-type doped areas and the second P-type doped areas.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: May 9, 2023
    Assignee: TAIPEI ANJET CORPORATION
    Inventors: Nobuo Machida, Wen-Tsung Chang, Wen-Chin Wu
  • Patent number: 11646330
    Abstract: A unit pixel arranged along with a display pixel in each pixel of a display panel is provided. The unit pixel may include a thin-film transistor (TFT) photodetector including an active layer formed of amorphous silicon or polycrystalline silicon on an amorphous transparent substrate, and at least one transistor electrically coupled to the TFT photodetector and configured to generate a voltage output from photocurrent generated from the active layer.
    Type: Grant
    Filed: December 29, 2019
    Date of Patent: May 9, 2023
    Inventor: Hoon Kim
  • Patent number: 11640972
    Abstract: A semiconductor substrate has a front face with a first dielectric region. A capacitive element includes, on a surface of the first dielectric region at the front face, a stack of layers which include a first conductive region, a second conductive region and a third conductive region. The second conductive region is electrically insulated from the first conductive region by a second dielectric region. The second conductive region is further electrically insulated from the third conductive region by a third dielectric region. The first and third conductive regions form one plate of the capacitive element, and the second conductive region forms another plate of the capacitive element.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: May 2, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventor: Abderrezak Marzaki
  • Patent number: 11631685
    Abstract: Provided is a memory device including a substrate, a plurality of first stack structures, and a plurality of second stack structures. The substrate includes an array region and a periphery region. The first stack structures are disposed on the substrate in the array region. Each first stack structure sequentially includes: a first tunneling dielectric layer, a first floating gate, a first inter-gate dielectric layer, a first control gate, a first metal layer, a first cap layer, and the first stop layer. The second stack structures are disposed on the substrate in the periphery region. Each second stack structure sequentially includes: a second tunneling dielectric layer, a second floating gate, a second inter-gate dielectric layer, a second control gate, a second metal layer, a second cap layer, and the second stop layer. The first stack structures have a pattern density greater than a pattern density of the second stack structures.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: April 18, 2023
    Assignee: Winbond Electronics Corp.
    Inventor: Chung-Hsuan Wang
  • Patent number: 11631751
    Abstract: A method of manufacturing a semiconductor device includes steps of (i) forming a buffer layer of an insulating material on a substrate, (ii) forming a seed layer of catalyst material containing Ni on the buffer layer, (iii) forming, on the buffer layer, an amorphous intrinsic silicon layer for forming a channel, (iv) forming, on the amorphous intrinsic silicon layer, a non-intrinsic silicon layer for forming a source and/or drain, (v) forming a metal layer on the non-intrinsic silicon layer, and (vi) performing metal induced crystallization (MIC) process for crystallization of the amorphous intrinsic silicon layer and the amorphous non-intrinsic silicon layer, and activation of the amorphous non-intrinsic silicon layer to form a conductive area.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: April 18, 2023
    Inventor: Ying Hong