Patents Examined by Richard M Rump
  • Patent number: 10947116
    Abstract: Highly ordered arrays of 3D faceted nanoparticle supercrystals are formed by self-assembly with controlled nanoparticle packing and unique facet dependent optical property by using a binary solvent diffusion method. The binary diffusion results in supercrystals whose size and quality are determined by initial nanoparticle concentration and diffusion speed. The supercrystal solids display unique facet-dependent surface plasmonic and surface-enhanced Raman characteristics. The supercrystals have potential applications in areas such as optics, electronics, and sensor platforms.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: March 16, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Hongyou Fan, Kaifu Bian
  • Patent number: 10940429
    Abstract: A sorbent composition such as for the removal of a contaminant species from a fluid stream, a method for manufacturing a sorbent composition and a method for the treatment of a flue gas stream to remove heavy metals such as mercury (Hg) therefrom. The sorbent composition includes a porous carbonaceous sorbent such as powdered activated carbon (PAC) and a solid particulate additive that functions as a flow-aid to enhance the pneumatic conveyance properties of the sorbent composition. The solid particulate additive may be a flake-like material, for example a phyllosilicate mineral or graphite.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: March 9, 2021
    Assignee: ADA Carbon Solutions, LLC
    Inventors: Sarah G. McMurray, Jacqueline Cecil de Peyer, Robert B. Huston, Joseph M. Wong
  • Patent number: 10934637
    Abstract: A process for producing a fabric comprising at least a graphene-based continuous or long fiber, comprising: (a) preparing a graphene dispersion having chemically functionalized graphene sheets dispersed in a fluid; (b) dispensing, depositing, and shearing at least a continuous or long filament of the graphene dispersion onto a substrate, and removing the fluid to form a continuous or long fiber comprising aligned chemically functionally graphene sheets; and (c) inducing chemical reactions between chemical functional groups attached to adjacent graphene sheets to form the graphene fiber; (d) combining the graphene fiber with a plurality of fibers, the same type as or different than the graphene fiber, to form at least one fiber yarn; and (e) combining the at least one fiber yarn and a plurality of fiber yarns, the same type as or different than the at least one fiber yarn, to form the fabric.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: March 2, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10933471
    Abstract: The present disclosure is directed to methods for producing a single-walled carbon nanotube in a chemical vapor deposition (CVD) reactor. The methods comprise contacting liquid catalyst droplets and a carbon source in the reactor, and forming a single walled carbon nanotube at the surface of the liquid catalyst droplets.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 2, 2021
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik Harutyunyan, Rahul Rao, Nam Hawn Chou
  • Patent number: 10928334
    Abstract: Methods for determining desired doping conditions for a semiconducting single-walled carbon nanotube (s-SWCNT) are provided. One exemplary method includes doping each of a plurality of s-SWCNT networks under a respective set of doping conditions; determining a thermoelectric (TE) power factor as a function of a fractional bleach of an absorption spectrum for the plurality of s-SWCNT networks doped under the respective sets of doping conditions; and using the function to identify one of the TE power factors within a range of the fractional bleach of the absorption spectrum. The identified TE power factor corresponds to the desired doping conditions.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: February 23, 2021
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Azure Dee Avery, Jeffrey Lee Blackburn, Andrew John Ferguson
  • Patent number: 10927006
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 23, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10927478
    Abstract: Provided is a fabric comprising a layer of yarns combined (by weaving, braiding, knitting, or non-woven) to form the fabric wherein the yarns comprise one or a plurality of graphene-based long or continuous fibers. The long or continuous fiber comprises chemically functionalized graphene sheets that are chemically bonded with one another having an inter-planar spacing d002 from 0.36 nm to 1.5 nm as determined by X-ray diffraction and a non-carbon element content of 0.1% to 40% by weight, wherein the functionalized graphene sheets are substantially parallel to one another and parallel to the fiber axis direction and the fiber contains no core-shell structure, have no helically arranged graphene domains, and have a length no less than 0.5 cm and a physical density from 1.5 to 2.25 g/cm3. The graphene fiber typically has a thermal conductivity from 300 to 1,600 W/mK, an electrical conductivity from 600 to 15,000 S/cm, or a tensile strength higher than 1.0 GPa.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: February 23, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10913056
    Abstract: A simple approach to produce mixed Cu/Cu2O nanocrystals having a specific morphology by controlling the reaction temperature during Cu/Cu2O nanocrystals synthesis. Other variables are kept constant, such as the amount of reactants, while the reaction temperatures is maintained at a predetermined temperature of 70° C., 30° C. or 0° C., which are used to produce different and controlled morphologies for the Cu/Cu2O nanocrystals. The reaction mixture includes a copper ion contributor, a capping agent, a pH adjustor, and reducing agent. The reaction mixture is held at the predetermined temperature for three hours to produce the Cu/Cu2O nanocrystals. The synthesis method has advantages such as mass production, easy operation, and high reproducibility.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: February 9, 2021
    Assignees: Honda Motor Co., Ltd., Temple University of The Commonwealth System of Hi
    Inventors: Gugang Chen, Avetik Harutyunyan, Yi Rao, Xia Li
  • Patent number: 10913657
    Abstract: The present invention belongs to the field of new materials technology and discloses a green method for preparing functionalized carbon materials. The present invention can use potassium ferrate(VI) as an oxidant and mechanical milling as a reaction technique for oxidizing carbon materials in a preparation of functionalized carbon materials having oxygen-containing functional groups. Compared with the prior art, the present invention provides a method that combines an environmentally friendly oxidant with an environmentally friendly reaction process. The oxidant potassium ferrate(VI) is a green oxidant without producing any toxic byproducts. The reaction process is solvent-free, facilitated by milling the solid mixture of carbon materials and the oxidant. Thus, the present invention provides an environmentally friendly method for preparing oxidatively functionalized carbon materials, which is of promotion value.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: February 9, 2021
    Assignee: SHANGHAI JIAOTONG UNIVERSITY
    Inventors: Tao Li, Zhaoyang Zhang, Ying Zhou
  • Patent number: 10899621
    Abstract: There is provided an industrially scalable system and method for preparing graphene oxide and thereafter reduced graphene oxide, with high yields (generally better than 98 percent), in which the yield and quality are maximized. In certain embodiments of the present method and process, the initial particle size of the graphite charge and the temperature profile are of greater importance to a successful outcome than the reactants themselves. It should be noted that unlike the previous Hummers methods and derivatives, secondary oxidizers and exfoliation agents such as nitric acid, sodium nitrate and similar intercalation agents are not necessary to achieve the desired result.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: January 26, 2021
    Assignee: NANO TREK HOLDINGS, LLC
    Inventor: Anthony B. Taves
  • Patent number: 10899622
    Abstract: Bio-based materials, e.g., epoxide starting material, a beta-lactone starting material and/or a beta-hydroxy amide starting material, may be used as feedstocks in processes for making and using acrylonitrile and acrylonitrile derivatives to produce, among other products, carbon fibers and carbon black.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 26, 2021
    Assignee: Novomer, Inc.
    Inventors: Sadesh Sookraj, Herb Munsterman, Han Lee
  • Patent number: 10889500
    Abstract: A method of preparing graphene from coal can include thermally processing raw coal and, after the coal has been at least partially cooled from thermal processing, forming reduced graphene oxide from the coal.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 12, 2021
    Assignee: Carbon Holdings Intellectual Properties, LLC
    Inventors: Charles Agee Atkins, Garrett W. Lindemann, Matthew Targett
  • Patent number: 10889505
    Abstract: A system for creating targeted vanadium oxide (VO2) nanoparticle compositions comprising a stock reaction mixture that is a fluid combination of at least one vanadium source combined with at least one dopant source. Each dopant source contains at least one target dopant element. The ratio of the number of vanadium atoms in the vanadium source to the number of target dopant element atoms in the dopant source is less than or equal to 10:1. A solvent that is compatible with said stock reaction mixture is selected. A pressure regulator increases the pressure of the solvent and the stock reaction mixture to between 0 and 5,000 psi. A heating element increases the temperature of the solvent to between 50 and 500° C. A mixing unit receives and mixes a continuous flow of stock reaction mixture with solvent to heat the stock reaction mixture and initiate formation of the targeted vanadium oxide (VO2) nanoparticle composition.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 12, 2021
    Assignee: Dimien, Inc.
    Inventors: Brian J. Schultz, Sean W. Depner
  • Patent number: 10875783
    Abstract: The present invention relaters to a method for continuously preparing a nano zinc oxide with a membrane reactor. A zinc salt solution and a precipitator solution required for the preparation of a zinc oxide are respectively used as dispersion phases, and under the action of a certain pressure, the two reaction solutions respectively penetrate through a membrane tube at a certain rate and disperse quickly under the action of a shear force and react, producing a precursor precipitate. A precursor suspension penetrates through the membrane tube continuously and circularly after being pressurized by a pump, and at the same time, deionized water as a washing fluid is added to a suspension storage tank, wherein impurity ions penetrate through membrane pores and are discharged along with the liquid medium; after the concentration of the impurity ions meets requirements, the concentrated solution is discharged continuously and then spray-dried to obtain a basic zinc carbonate precursor powder.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: December 29, 2020
    Assignee: NANJING UNIVERSITY OF TECHNOLOGY
    Inventors: Weihong Xing, Zhilong Xu, Nanping Xu, Zhaoxiang Zhong, Feng Zhang
  • Patent number: 10875213
    Abstract: A process is provided to reclaim carbon fiber from a cured vinyl ester, crosslinked unsaturated polyester, or epoxy thermoset matrix. The composite pieces are added to a polyol solvent composition under to conditions to free more than 95% by weight of the carbon fiber from the composite. The freed carbon fibers are washed and dried to reclaim carbon fiber reusable to reinforce a polymer to form a new FRC article. Solvents are chosen that are low cost and low toxicity. Processing is further facilitated by techniques such as solvent pre-swell of the particles, microwave heating, and sonication to promote thermoset matrix digestion to free reinforcing carbon fibers.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 29, 2020
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael Siwajek, David J. Krug
  • Patent number: 10870580
    Abstract: The present disclosure provides a polyimide film prepared from a precursor composition containing a polyamic acid and an organic solvent and having a value of (first FWHM?second FWHM)/(first FWHM+second FWHM) which is less than 0.4, a graphite sheet prepared from the polyimide film, and a method for preparing a graphite sheet.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: December 22, 2020
    Assignee: PI Advanced Materials Co., Ltd.
    Inventors: Dong Young Won, Kyung Su Kim, Sung Il Cho, Jeong Yeul Choi
  • Patent number: 10870918
    Abstract: A method of forming a carbonized composition includes providing an organic composition, forming a protective layer over the organic composition, increasing temperature to carbonize the organic composition and for a period of time to form the carbonized composition, and removing the protective layer from the carbonized composition.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: December 22, 2020
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Haitao Liu, Feng Zhou
  • Patent number: 10865111
    Abstract: This patent disclosure includes a process that uniquely and unexpectedly results in the production of extremely high specific surface area and large pore volume carbon nanomaterial with high content of sp2 hybridized carbon-carbon in the form of nanosheets from a renewable carbonaceous raw material. The resulting nanomaterial is in particulate form or porous nanomaterial or dispersed in solvent. This process can also be used to produce carbon nanosheet on substrates or form a nanocomposite with other materials that results in exceptional properties.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: December 15, 2020
    Inventor: Michael Kwabena Opoku
  • Patent number: 10865502
    Abstract: Provided is a graphene-based long fiber comprising chemically functionalized graphene sheets that are chemically bonded with one another having an inter-planar spacing d002 from 0.36 nm to 1.5 nm as determined by X-ray diffraction and a non-carbon element content of 0.1% to 40% by weight, wherein the functionalized graphene sheets are substantially parallel to one another and parallel to the fiber axis direction and the fiber contains no core-shell structure, have no helically arranged graphene domains, and have a length no less than 0.5 cm and a physical density from 1.5 to 2.2 g/cm3. The graphene fiber typically has a thermal conductivity from 300 to 1,600 W/mK, an electrical conductivity from 600 to 15,000 S/cm, or a tensile strength higher than 1.0 GPa.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: December 15, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10850996
    Abstract: The present invention relates to a process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate, a process for the mineralization of water as well as the use of an aqueous solution comprising at least one earth alkali hydrogen carbonate obtained by the process for the mineralization of water.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 1, 2020
    Assignee: OMYA INTERNATIONAL AG
    Inventor: Nicholas Charles Nelson