Patents Examined by Robert Kunemund
  • Patent number: 7090723
    Abstract: High temperature composites and thermal barrier coatings, and related methods, using anisotropic ceramic materials, such materials as can be modified to reduce substrate thermal mismatch.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: August 15, 2006
    Assignee: Applied Thin Films, Inc.
    Inventors: Sankar Sambasivan, Kimberly Steiner
  • Patent number: 7087114
    Abstract: A low dislocation density GaN single crystal substrate is made by forming a seed mask having parallel stripes regularly and periodically aligning on an undersubstrate, growing a GaN crystal on a facet-growth condition, forming repetitions of parallel facet hills and facet valleys rooted upon the mask stripes, maintaining the facet hills and facet valleys, producing voluminous defect accumulating regions (H) accompanying the valleys, yielding low dislocation single crystal regions (Z) following the facets, making C-plane growth regions (Y) following flat tops between the facets, gathering dislocations on the facets into the valleys by the action of the growing facets, reducing dislocations in the low dislocation single crystal regions (Z) and the C-plane growth regions (Y), and accumulating the dislocations in cores (S) or interfaces (K) of the voluminous defect accumulating regions (H).
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: August 8, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kensaku Motoki, Ryu Hirota, Takuji Okahisa, Seiji Nakahata
  • Patent number: 7087112
    Abstract: An apparatus and method for fabricating a mount for an aluminum nitride (AlN) seed for single crystal aluminum nitride growth is provided. A holder having a proximal base and wall portions extending therefrom is fabricated from crystal growth crucible material, and defines an internal cavity. An AlN seed is placed within the holder, and placed within a nitrogen atmosphere at a temperature at or exceeding the melting point of a suitable material capable of forming a nitride ceramic by nitridation, such as aluminum. Pellets fabricated from this material are dropped into the holder and onto the seed, so that they melt and react with the nitrogen atmosphere to form a nitride ceramic. The seed is effectively molded in-situ with the ceramic, so that the ceramic and holder forms a closely conforming holder for the seed, suitable for single crystal AlN growth.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: August 8, 2006
    Assignee: Crystal IS, Inc.
    Inventors: Juan Carlos Rojo, Leo J. Schowalter, Kenneth Morgan, Jan Barani
  • Patent number: 7087113
    Abstract: A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: August 8, 2006
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 7077901
    Abstract: A process for producing a single crystal silicon wafer, comprising the steps of forming a porous layer on a single crystal silicon substrate comprising a silicon whose concentration of mass number 28 silicon isotope is less than 92.5% on an average; dissolving a starting silicon whose concentration of mass number 28 silicone isotope whose mass number is more than 98% on an average in a melt for liquid-phase epitaxy until said starting silicon becomes to be a supersaturated state in said melt under reductive atmosphere maintained at high temperature: immersing said single crystal silicon substrate in said melt to grow a single crystal silicon layer on the surface of said porous layer of said single crystal silicon substrate; and peeling said single crystal silicon layer from a portion of said porous layer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: July 18, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumi Nakagawa, Takao Yonehara, Kazuaki Ohmi, Shoji Nishida
  • Patent number: 7077900
    Abstract: Disclosed is a method of fabricating a photonic crystal fiber preform using an extrusion die, comprising the step of extruding a first optical material into a plurality of dispersed phases to axially orient the dispersed phases.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: July 18, 2006
    Assignee: Samsung Electronics Co. Ltd.
    Inventor: Joon Yong Park
  • Patent number: 7077902
    Abstract: An aluminum-containing material deposition method includes depositing a first precursor on a substrate in the substantial absence of a second precursor. The first precursor can contain a chelate of Al(NR1R2)x(NR3(CH2)zNR4R5)y or Al(NR1R2)x(NR3(CH2)zOR4)y; where x is 0, 1, or 2; y is 3?x; z is an integer 2 to 8; and R1 to R5 are independently selected from among hydrocarbyl groups containing 1 to 10 carbon atoms with silicon optionally substituted for one or more carbon atoms. The method includes depositing the second precursor on the first deposited precursor, the second precursor containing a nitrogen source or an oxidant. A deposition product of the first and second precursors includes at least one of an aluminum nitride or an aluminum oxide. The deposition method can be atomic layer deposition where the first and second precursors are chemisorbed or reacted as monolayers. The first precursor can further be non-pyrophoric.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: July 18, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 7077905
    Abstract: An apparatus for pulling the single crystal has a radiation shield. The apparatus can improve the ratio of single crystallization, even if the radiation shield is made of graphite base material and covered with silicon carbide. The apparatus can be manufactured by low cost and can improve heat insulating characteristic. The apparatus does not generate cracks by heat stress even in a large size. In the apparatus for Czochralski method having the radiation shield, the radiation shield is formed of graphite base material covered with silicon carbide. An inside corner of a curvature formed on the base material is formed of a curved surface.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: July 18, 2006
    Assignee: Toshiba Ceramics Co., Ltd.
    Inventors: Makoto Shimosaka, Sunao Abe
  • Patent number: 7077903
    Abstract: Methods for generating a nanostructure and for enhancing etch selectivity, and a nanostructure are disclosed. The invention implements a tunable etch-resistant anti-reflective (TERA) material integration scheme which gives high etch selectivity for both etching pattern transfer through the TERA layer (used as an ARC and/or hardmask) with etch selectivity to the patterned photoresist, and etching to pattern transfer through a dielectric layer of nitride. This is accomplished by oxidizing a TERA layer after etching pattern transfer through the TERA layer to form an oxidized TERA layer having chemical properties similar to oxide. The methods provide all of the advantages of the TERA material and allows for high etch selectivity (approximately 5–10:1) for etching to pattern transfer through nitride. In addition, the methodology reduces LER and allows for trimming despite reduced photoresist thickness.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: July 18, 2006
    Assignee: International Business Machines Corporation
    Inventors: Katherina E. Babich, Scott D. Halle, David V. Horak, Arpan P. Mahorowala, Wesley C. Natzle, Dirk Pfeiffer, Hongwen Yan
  • Patent number: 7077904
    Abstract: The present invention relates to a method for forming silicon oxide films on substrates using an atomic layer deposition process. Specifically, the silicon oxide films are formed at low temperature and high deposition rate via the atomic layer deposition process using a Si2Cl6 source unlike a conventional atomic layer deposition process using a SiCl4 source. The atomic layer deposition apparatus used in the above process can be in-situ cleaned effectively at low temperature using a HF gas or a mixture gas of HF gas and gas containing —OH group.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung Ha Cho, Yong Il Kim, Cheol Ho Shin, Won Hyung Lee, Jung Soo Kim, Sang Tae Sim
  • Patent number: 7074270
    Abstract: Techniques for predicting the behavior of dopant and defect components in a substrate lattice formed from a substrate material can be implemented in hardware or software. Fundamental data for a set of microscopic processes that can occur during one or more material processing operations is obtained. Such data can include data representing the kinetics of processes in the set of microscopic processes and the energetics and structure of possible states in the material processing operations. From the fundamental data and a set of external conditions, distributions of dopant and defect components in the substrate lattice are predicted.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: July 11, 2006
    Assignees: Seiko Epson Corporation, California Institute of Technology
    Inventors: Yuzuru Sato, Masamitsu Uehara, Gyeong S. Hwang, William A. Goddard, III
  • Patent number: 7074271
    Abstract: A surface of a reference sample is contaminated with a transition metal, and a heat treatment is performed to diffuse the transition metal in the sample. A concentration of recombination centers formed by the transition metal is measured in the entire heat-treated reference sample, and a region [V], a region [Pv], a region [Pi], and a region [I] in the reference sample are defined based on the values measured. Meanwhile, recombination lifetimes associated with the transition metal are measured in the entire heat-treated reference sample. Based on both of the measurement results, a correlation line of the concentration of recombination centers and the recombination lifetimes is produced. A surface of the measurement sample is contaminated with the transition metal, and a heat treatment is performed to diffuse the transition metal in the sample.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: July 11, 2006
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Jun Furukawa, Kazunari Kurita, Kazuhiro Harada
  • Patent number: 7070651
    Abstract: A film (carbon and/or diamond) for a field emitter device, which may be utilized within a computer display, is produced by a process utilizing etching of a substrate and then depositing the film. The etching step creates nucleation sites on the substrate for the film deposition process. With this process patterning of the emitting film is avoided. A field emitter device can be manufactured with such a film.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: July 4, 2006
    Assignee: SI Diamond Technology, Inc.
    Inventors: Zhidan Li Tolt, Zvi Yaniv, Richard Lee Fink
  • Patent number: 7067006
    Abstract: A method of forming a single crystalline structure having a substantially linear response at least over the wave lengths of 1,200 to 1,700 nanometers, the resulting structure and its use as an optical media or a barrier coating. Thus, maximum obtainable optical transmission with zero attenuation is provided. There is no intrinsic material absorption.
    Type: Grant
    Filed: October 5, 2002
    Date of Patent: June 27, 2006
    Assignee: CZT Inc.
    Inventor: Susana Curatolo
  • Patent number: 7067007
    Abstract: The process for growing single crystals, wherein crystal material is melted in a crucible and a crystal nucleus is immersed in the molten crystal material and slowly pulled out, wherein the crystal formed during the pulling is kept at a temperature close to melting temperature of the output material. The invention also includes a device for practicing the above process.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: June 27, 2006
    Assignee: Schott Glas
    Inventors: Lothar Ackermann, Daniel Rytz, Klaus Dupre
  • Patent number: 7060132
    Abstract: A method and apparatus for growing a thin film onto a substrate is disclosed. According to one embodiment, a plurality of substrates, each having a width and a length, are placed in a reaction space and the substrates are subjected to surface reactions of vapor-phase reactants according to the ALD method to form a thin film on the surfaces of the substrates. The reaction space comprises an elongated gas channel having a cross-section with a width greater that the height and which has a length which is at least 2 times greater than the length of one substrate in the direction of the gas flow in the channel, the channel having a folded configuration with at least one approximately 180 degree turn in the direction of the gas flow.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: June 13, 2006
    Assignee: ASM International N.V.
    Inventors: Sven Lindfors, Ivo Raaijmakers
  • Patent number: 7060131
    Abstract: The present invention relates a method for epitaxial growth of a second group III-V crystal having a second lattice constant over a first group III-V crystal having a first lattice constant, wherein strain relaxation associated with lattice-mismatched epitaxy is suppressed and thus dislocation defects do not form. In the first step, the surface of the first group III-V crystal (substrate) is cleansed by desorption of surface oxides. In the second step, a layer of condensed group-V species is condensed on the surface of the first group III-V crystal. In the third step, a mono-layer of constituent group-III atoms is deposited over the layer of condensed group-V species in order for the layer of constituent group-III atoms to retain the condensed group-V layer. Subsequently, the mono-layer of group-III atoms is annealed at a higher temperature.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: June 13, 2006
    Assignee: HRL Laboratories, LLC
    Inventor: Binqiang Shi
  • Patent number: 7060133
    Abstract: A single crystal pulling apparatus for a metal fluoride comprising a crucible provided in a chamber for filling with a molten solution of a single crystal material, a melting heater provided to surround the crucible, a vertically movable single crystal pulling bar for attaching a seed crystal on a tip thereof for coming in contact with the molten solution of the single crystal material in the crucible, a heat insulating wall provided in the chamber to surround at least a peripheral side portion of a single crystal pulling region in an upper part of the crucible, a ceiling board for closing an opening portion of an upper end in an upper part of the heat insulating wall, and a single crystal pulling chamber surrounded by the heat insulating wall and the ceiling board, wherein the ceiling board is provided with at least an inserting hole for inserting the single crystal pulling bar, and wherein a coefficient of thermal conductivity in a direction of a thickness of the ceiling board is 1000 to 50000 W/m2·K.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: June 13, 2006
    Assignee: Tokuyama Corporation
    Inventors: Teruhiko Nawata, Hidetaka Miyazaki, Hiroyuki Yanagi, Shinichi Nitta, Harumasa Ito, Isao Yamaga
  • Patent number: 7056381
    Abstract: Concentration of metal element which promotes crystallization of silicon and which exists within a crystal silicon film obtained by utilizing the metal element is reduced. A first heat treatment for crystallization is implemented after introducing nickel to an amorphous silicon film 103. Then, laser light is irradiated to diffuse the nickel element concentrated locally. After that, another heat treatment is implemented within an oxidizing atmosphere at a temperature higher than that of the previous heat treatment. A thermal oxide film 106 is formed in this step. At this time, the nickel element is gettered to the thermal oxide film 106. Then, the thermal oxide film 106 is removed. Thereby, a crystal silicon film 107 having low concentration of the metal element and a high crystallinity can be obtained.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: June 6, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Jun Koyama, Yasushi Ogata, Masahiko Hayakawa, Mitsuaki Osame
  • Patent number: 7052545
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: May 30, 2006
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Stephen R. Quake, Carl L. Hansen