Patents Examined by Robert Kunemund
  • Patent number: 7160388
    Abstract: The present invention refers to an ammonobasic method for preparing a gallium-containing nitride crystal, in which gallium-containing feedstock is crystallized on at least one crystallization seed in the presence of an alkali metal-containing component in a supercritical nitrogen-containing solvent. The method can provide monocrystalline gallium-containing nitride crystals having a very high quality.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: January 9, 2007
    Assignees: Nichia Corporation, Ammono Sp. z o.o.
    Inventors: Robert Tomasz Dwiliński, Roman Marek Doradziński, Jerzy Garczyński, Leszek Piotr Sierzputowski, Yasuo Kanbara
  • Patent number: 7160386
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 9, 2007
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 7160529
    Abstract: Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: January 9, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
  • Patent number: 7161029
    Abstract: A diL-lysine monosulfate trihydrate crystal which has a large tabular form and is more easily separable from the mother liquor. The crystal is obtained by a novel process of conducting crystallization at a lower temperature.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: January 9, 2007
    Assignee: Ajinomoto Co., Inc.
    Inventors: Takeshi Kushiku, Dave Steckelberg, Toshiya Tanabe, Jirou Haga
  • Patent number: 7160385
    Abstract: A silicon wafer and a method for manufacturing the same are provided, wherein the silicon wafer has no crystal defects in the vicinity of the surface and provides excellent gettering efficiency in the process of manufacturing devices without IG treatment. The oxygen concentration and the carbon concentration are controlled respectively within a range of 11×1017–17×1017 atoms/cm3 (OLD ASTM) and within a range of 1×1016–15×1016 atoms/cm3 (NEW ASTM). A denuded zone having no crystal defects due to the existence of oxygen is formed on the surface and in the vicinity thereof, and oxygen precipitates are formed at a density of 1×104–5×106 counts/cm2, when a heat treatment is carried out at a temperature of 500–1000° C. for 1 to 24 hours. In the method for manufacturing the silicon wafer, moreover, the silicon wafer having the oxygen and carbon concentrations as controlled above is heat-treated at a temperature of 1100° C.–1380° C. for 1 to 10 hours.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: January 9, 2007
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventor: Yasuo Koike
  • Patent number: 7156917
    Abstract: An apparatus for growing a biological macromolecular crystal by vaporizing biological macromolecular solution into an oversaturated state. The apparatus includes a first sealed room that receives first crystallizing agent solution, and a communicating tube that communicates with the first sealed room and has a small sectional area for suppressing convection of air. A plurality of droplets of solution dissolving a biological macromolecule and a crystallizing agent therein are held in the communicating tube with the plurality of droplets being separated from each other.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 2, 2007
    Assignees: IHI Aerospace Co., Ltd.
    Inventors: Hideaki Moriyama, Norio Sugi, Kazunori Kawasaki, Shoji Muramatsu
  • Patent number: 7153359
    Abstract: A crystalline semiconductor film, the crystalline semiconductor film being formed over an insulative substrate, and including semiconductor crystal grains laterally grown along a surface of the insulative substrate, wherein the laterally-grown semiconductor crystal grains are in contact with each other at grain boundaries, and a distance between adjacent grain boundaries is equal to or smaller than two times a lateral growth distance of the semiconductor crystal grains.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: December 26, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masashi Maekawa, Keiichi Fukuyama, Michinori Iwai, Kohei Tanaka
  • Patent number: 7153360
    Abstract: A self-assembled photonic crystal is formed using a template made by nanoimprint lithography. A layer of imprintable material is deposited on a substrate, a pattern is imprinted in the imprintable material to form a template (the pattern of the template being adapted to substantially constrain colloidal particles to a predetermined lattice), and colloidal particles are introduced onto the template, substantially filling the predetermined lattice.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: December 26, 2006
    Assignee: Hewlett-Packard Development Company, LP.
    Inventors: Gregory S Herman, David Champion, James E. Ellenson
  • Patent number: 7150788
    Abstract: A method of adjusting the in-plane lattice constant of a substrate and an in-plane lattice constant adjusted substrate are provided. A crystalline substrate (1) made of SrTiO3 is formed at a first preestablished temperature thereon with a first epitaxial thin film (2) made of a first material, e. g., BaTiO3, and then on the first epitaxial thin film (2) with a second epitaxial thin film (6) made of a second material, e. g., BaxSr1?xTiO3 (where 0<x<1), that contains a substance of the first material and another substance which together therewith is capable of forming a solid solution in a preestablished component ratio. Thereafter, the substrate is heat-treated at a second preselected temperature. Heat treated at the second preestablished temperature, the substrate has dislocations (4) introduced therein and the second epitaxial thin film (6) has its lattice constant relaxed to a value close to the lattice constant of bulk crystal of the second material.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: December 19, 2006
    Assignee: Japan Science and Technology Agency
    Inventors: Hideomi Koinuma, Masashi Kawasaki, Tomoteru Fukumura, Kota Terai
  • Patent number: 7147714
    Abstract: When a SiC substrate is heated up to around 1800°C., sublimation of SiC occurs from the SiC substrate. Moreover, temperature of the front surface of the SiC substrate is lower than that of the back surface of the SiC substrate. Therefore, sublimation gas sublimed from a back-surface vicinity of the substrate, where temperature is high, moves to a front-surface vicinity of the substrate, where temperature is low, through the hollow micro-pipe defect. Epitaxial growth proceeds on the front surface of the substrate while the sublimation gas is recrystallized at the front-surface vicinity of the substrate, so that the micro-pipe defect is occluded.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: December 12, 2006
    Assignee: Denso Corporation
    Inventors: Masami Naito, Kazukuni Hara, Fusao Hirose, Shoichi Onda
  • Patent number: 7147710
    Abstract: There is described a method which enables stable manufacture of a high-quality, ultra-thin epitaxial silicon wafer, as well as an epitaxial silicon wafer capable of bearing shipment manufactured by the method. A method of manufacturing an epitaxial silicon wafer having an ultra-thin epitaxial film, by means of forming an epitaxial film on a silicon wafer after having annealed the silicon wafer, includes the steps of: sufficiently smoothing COPs formed in the surface of the silicon wafer by means of appropriately setting annealing conditions according to an size of COPs in the vicinity of a surface of the silicon wafer; and forming an epitaxial film through epitaxial growth.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: December 12, 2006
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Kazuya Togashi, Masayoshi Danbata, Kuniaki Arai, Kaori Matsumoto
  • Patent number: 7144458
    Abstract: Nanocrystals are synthesized with a high degree of control over reaction conditions and hence product quality in a flow-through reactor in which the reaction conditions are maintained by on-line detection of characteristic properties of the product and by adjusting the reaction conditions accordingly. The coating of nanocrystals is achieved in an analogous manner.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: December 5, 2006
    Assignee: Invitrogen Corporation
    Inventors: Donald A. Zehnder, Marcel P. Bruchez, Joseph A. Treadway, Jonathan P. Earhart
  • Patent number: 7135069
    Abstract: An inexpensive method of coating silicon shot with boron atoms comprises (1) immersing silicon shot in an aqueous solution comprising a boric acid and polyvinyl alcohol, and (2) heating the solution so as to evaporate water and form a polymerized polyvinyl alcohol coating containing boron on the shot. A precise amount of this coated shot may then be mixed with a measured quantity of intrinsic silicon pellets and the resulting mixture may then be melted to provide a boron-doped silicon melt for use in growing p-type silicon bodies that can be converted to substrates for photovoltaic solar cells.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: November 14, 2006
    Assignee: Schott Solar, Inc.
    Inventor: Bernhard P. Piwczyk
  • Patent number: 7135071
    Abstract: A fractal structure is formed to have a plurality of regions different in fractal dimension characterizing the self-similarity. The fractal structure is grown from one or more origins under growth conditions providing a first fractal dimension in a first portion of the growth process from the start point of time to a first point of time, and under growth conditions providing a second fractal dimension lower than the first fractal dimension in another portion of the growth process from the first point of time to a second point of time. By adjusting the timing for changing the growth conditions, the fractal structure is controlled in nature of phase transition, such as critical temperature for ferromagnetic phase transition, which occurs in the fractal structure. For enhancing the controllability, the first fractal dimension is preferably larger than 2.7 and the second fractal dimension is preferably smaller than 2.3.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: November 14, 2006
    Assignee: Sony Corporation
    Inventor: Ryuichi Ugajin
  • Patent number: 7128785
    Abstract: The invention relates to a device and to a method for depositing especially crystalline layers from the gas phase onto especially crystalline substrates. The device comprises a heated reaction chamber with a substrate support that receives at least one substrate; one or more heated sources where a gaseous halide is formed by chemical reaction of a halogen, especially HCl, fed to the source together with a substrate gas, and a metal, for example GA, In, Al associated with the source, which is transported through a gas inlet section to a substrate supported by the substrate support; and a hydride supply for supplying a hydride, especially NH3, AsH3 or PH3 into the reaction chamber. A plurality of rotationally driven substrate supports is disposed in an annular arrangement on a substrate support carrier, the sources being disposed in the center of said substrate carrier.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: October 31, 2006
    Assignee: Aixtron AG
    Inventors: Johannes Kaeppeler, Michael Heuken, Rainer Beccard, Gerhard Karl Strauch
  • Patent number: 7125453
    Abstract: A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550° C. and about 1500° C.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: October 24, 2006
    Assignee: General Electric Company
    Inventors: Mark Philip D'Evelyn, Kristi Jean Narang, Robert Arthur Giddings, Steven Alfred Tysoe, John William Lucek, Suresh Shankarappa Vagarali, Robert Vincent Leonelli, Jr., Joel Rice Dysart
  • Patent number: 7125450
    Abstract: The present invention is directed to a process for preparing single crystal silicon, in ingot or wafer form, wherein crucible rotation is utilized to control the average axial temperature gradient in the crystal, G0, as a function of radius (i.e., G0(r)), particularly at or near the central axis. Additionally, crucible rotation modulation is utilized to obtain an axially uniform oxygen content therein.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: October 24, 2006
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Zheng Lu, Steven L. Kimbel, Ying Tao
  • Patent number: 7122083
    Abstract: This invention relates to a novel system for making uniform crystals. The system, by virtue of the nature of its crystal product, is useful in various chemical, pharmaceutical, agricultural, and biotechnology applications. The invention features physically separated and controlled crystal nucleation and growth zones useful in industrially scaled crystallization processes. The invention also provides a method to preferentially nucleate and crystallize a desired category of crystal structure (enantiomer, solvate, polymorph) of non-chiral and chiral compounds.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: October 17, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Daniel Albert Green
  • Patent number: 7122082
    Abstract: A silicon wafer wherein stacking fault (SF) nuclei are distributed throughout the entire in-plane direction, and the density of the stacking fault nuclei is set to a range of between 0.5×108 cm?3 and 1×1011 cm?3.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: October 17, 2006
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Takaaki Shiota, Yoshinobu Nakada
  • Patent number: 7118626
    Abstract: The invention is a crystallization cassette and associated method for growing and analyzing macromolecular crystals in situ by X-ray crystallography. The cassette allows proteins (as well as other macromolecules) to be crystallized by the counter-diffusion method in a restricted geometry. Using this procedure, crystals can be adequately prepared for direct X-ray data analysis such that the protein's three-dimesional structure can be solved without crystal manipulation.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: October 10, 2006
    Assignee: University of Alabama in Huntsville
    Inventors: Joseph D. Ng, Juan-Manuel Garcia-Ruiz, Jose A. Gavira-Gallardo, Mark Wells, Greg Jenkins