Patents Examined by Robert P Alejnikov, Jr.
  • Patent number: 11255896
    Abstract: A method for vehicle electrical system diagnosis by means of a regulator, which is configured to regulate the voltage supplied by a generator via a converter for a vehicle electrical system of a vehicle by outputting an output signal, wherein the method comprises the following steps: detecting an output signal by way of a control device, ascertaining an instantaneous power output at the vehicle electrical system on the basis of the detected output signal, and analyzing the ascertained power output for diagnosis of the vehicle electrical system and at least one electrical consumer which is connected to the vehicle electrical system.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: February 22, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Jonathan Mueller, Wolfgang Fischer
  • Patent number: 11255888
    Abstract: A load estimating device measures a voltage and a current supplied to a plurality of loads connected with a power supply, and obtains feature amounts of the plurality of loads from measurement values of the voltage and the current. A storage device stores a feature amount of each combination of two or more loads in advance. The load estimating device estimates what the plurality of loads connected with the power supply device are, on the basis of the obtained feature amounts and the feature amounts stored in the storage device. The feature amount includes a combination of an apparent power and a power factor.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: February 22, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Mio Oshima, Hiroyuki Eguchi
  • Patent number: 11243243
    Abstract: A circuit for arc detection in a direct current and a microprocessor to resolve a problem of low accuracy of a detection result of an existing circuit for arc detection in a direct current, where the circuit includes a current sampling circuit, a first circuit, a second circuit, and a microprocessor. The current sampling circuit is configured to perform current sampling on the direct current, and output a current sampling signal of the direct current. The first circuit is configured to output a time domain signal including at least one pulse. The second circuit is configured to output a frequency domain signal of the current sampling signal after amplifying and filtering the current sampling signal. The microprocessor is configured to determine that an arc exists in the direct current when a counting result of the quantity of arc events meets a preset condition.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 8, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jintao Han, Shengjie Zhang
  • Patent number: 11231458
    Abstract: The present disclosure relates to a system for aligning a measurement system suitable for radio frequency measurement of a device under test. The system includes an alignment device, a measurement module and an indication module. The alignment device includes at least two alignment antennas configured to receive a signal over-the-air from a measurement antenna of the measurement system. The measurement module is configured to measure a phase difference between the at least two alignment antennas receiving the signal. The indication module is configured to indicate the measured phase difference between the at least two alignment antennas or a reference quantity associated with the measured phase difference. Further, a method of aligning a measurement system used for radio frequency measurement of a device under test is described.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: January 25, 2022
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Steffen Neidhardt, Josef Schmoeller, Corbett Rowell, Daniel Markert
  • Patent number: 11226355
    Abstract: A shunt-resistance type current detector includes a flat-plate shaped shunt resistor joined between a flat-plate shaped first bus bar and a flat-plate shaped second bus bar. Each of the bus bars includes respective detection conductors connected to a current detector. The shunt resistor and each of the bus bars are joined via weld parts. A gap for mounting the shunt resistor is formed between the first bus bar and the second bus bar, and projected parts are formed each being projected toward the gap from opposing faces opposing to each other in the gap. The shunt resistor comes an contact with each of the projected parts in a top-and-bottom direction.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 18, 2022
    Assignee: YAZAKI CORPORATION
    Inventors: Yuusuke Aono, Shigeki Totsuka, Yoshiaki Makino
  • Patent number: 11211863
    Abstract: An arrangement includes a conductor, forming the primary side of a transformer, the secondary side being connected to a rectifier circuit. The rectifier output is connected to a voltage stabilizing circuit for an electronic unit and to a first series circuit formed by a first switching component and a first resistor. In the event of a first voltage value being reached at the first input of the voltage stabilizing circuit, the first switching component is switched to be conductive. The secondary current of the transformer flows via the first resistor to drop an electrical voltage across the first resistor. The electric current of conductor is determinable from the voltage. The use of just one transformer used both for energy generation and for current measurement makes it possible to realize a very compact and small design of a current measuring device having a simple construction.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: December 28, 2021
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Jean-Mary Martel
  • Patent number: 11204372
    Abstract: A current sensor includes three bus bars, each of which has recesses. The third bus bar is between the first and second bus bars. The recesses of the first and second bus bars are symmetrical about a virtual line that passes through the center of the third bus bar. The third bus bar has two recesses that are symmetrical about the same virtual line.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: December 21, 2021
    Assignee: DENSO CORPORATION
    Inventor: Ryo Miyamoto
  • Patent number: 11199514
    Abstract: An Electron Paramagnetic resonance (EPR) system and method allows the measurement paramagnetic characteristics of materials in real-time, such as heavy oil, hydrocarbons, asphaltenes, heptane, vanadium, resins, drilling fluid, mud, wax deposits or the like. The EPR systems and methods discussed herein are low cost, small and light weight, making them usable in flow-assurance or logging applications. The EPR sensor is capable of measuring paramagnetic properties of materials from a distance of several inches. In some embodiments, a window will be used to separate the EPR sensor from the materials in a pipeline or wellbore. Since the sensor does need to be in direct contact with the materials, it can operate at a lower temperature or pressure. In other embodiments, the EPR sensor may be placed in the materials.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: December 14, 2021
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Aydin Babakhani, Xuebei Yang
  • Patent number: 11199573
    Abstract: A display panel includes: a pixel region comprising a plurality of pixels; an open/short test region comprising a plurality of open/short test pads; a dummy stage configured to generate a carry signal in response to a scan start signal; and a plurality of stages configured to sequentially provide a plurality of scan signals to the plurality of pixels in response to the carry signal, wherein the plurality of stages is spaced apart by a first distance from the pixel region, and the dummy stage is spaced apart by a second distance greater than the first distance from the open/short test region.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: December 14, 2021
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jun Hyun Park, Dong Woo Kim, An Su Lee, Kang Moon Jo
  • Patent number: 11187731
    Abstract: A power glitch signal detection circuit, a security chip and an electronic apparatus are disclosed. The power glitch signal detection circuit includes: a voltage sampling module configured to acquire and output a sampled voltage of a power supply voltage; a detection unit array, including multiple MOS transistors with various threshold voltages, wherein first terminals of the multiple MOS transistors are connected to the sampled voltages, and second terminals of the multiple MOS transistors are connected to the power supply voltage; a switch array, including multiple switches corresponding to the multiple MOS transistors; and a signal generation circuit, wherein drain terminals of the multiple MOS transistors are connected to the signal generation circuit through the multiple switches respectively.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 30, 2021
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Jianfeng Xue, Jiang Yang
  • Patent number: 11181556
    Abstract: Portable device for a contactless measurement of a current passing through an electrical conductor, the device including a measuring module and a processing module, the measuring module, configured to be held by an operator in contact with the conductor in a plane substantially orthogonal to this conductor and without clamping this conductor, including one or two pluralities of magnetic field sensors, and the processing module being configured to perform a determined linear combination of the plurality of signals delivered by one or the two pluralities of magnetic field sensors, so as to perform an angular spatial filtering isolating the current to be measured from other disturbing currents passing through other conductors.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: November 23, 2021
    Assignee: CHAUVIN ARNOUX
    Inventors: Francisque Pion, Marouane Ait El Faqir
  • Patent number: 11175322
    Abstract: Certain aspects and features include a system and method for energy measurement in electric meter systems. In an example, an electric meter receives an Alternating Current (A/C) signal. The electric meter includes a current measurement device that is configured to obtain a current measurement of a current of the A/C signal. The current measurement includes a fundamental frequency component and a noise component. The electric meter receives a current measurement signal from the current measurement device and filters the noise component from the current measurement, thereby creating a filtered current measurement signal. When the filtered current measurement signal is greater than a starting current threshold, the electric meter calculates an energy consumption measurement.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 16, 2021
    Assignee: Landis+Gyr Innovations, Inc.
    Inventors: David Stenberg, Frank J. Boudreau, Jr.
  • Patent number: 11169199
    Abstract: A method and device for online insulation monitoring of a motor are applied to an inverter-driven motor system. The method includes: measuring phase-to-ground voltages of three-phase inlet lead ends of a motor; acquiring leakage currents of the three-phase inlet lead ends of the motor; acquiring a voltage common-mode component, a voltage differential-mode component, a current common-mode component and a current differential-mode component from the phase-to-ground voltages and the leakage currents; and acquiring ground-wall insulation equivalent capacitance and phase-to-phase insulation equivalent capacitance according to the components. A ground-wall insulation monitoring result and a phase-to-phase insulation monitoring result are distinguished from each other by the acquired ground-wall insulation equivalent capacitance and phase-to-phase insulation equivalent capacitance, such that two kinds of insulation are monitored respectively.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 9, 2021
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Pinjia Zhang, Dayong Zheng, Hongdong Zhu
  • Patent number: 11169179
    Abstract: A current sensing circuit having self-calibration includes two leads, a sensing element having a sensing resistance, and a sensing and calibration circuit. The sensing and calibration circuit senses and calibrates a sensing voltage of the sensing element, and senses a sensing current through the sensing element according to the sensing resistance and the sensing voltage, to generate a current sensing output signal. The sensing and calibration circuit includes two pads, a V2I circuit, a current mirror circuit and an I2V circuit. The sensing element has a first temperature coefficient (TC). The TC and/or the resistance of an adjusting resistor in the V2I circuit and an adjusting resistor in the I2V circuit are determined according to the first TC, such that the TC of the current sensing output signal is equal to 0.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: November 9, 2021
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Isaac Y. Chen, Chien-Fu Tang, Hsin-Yi Wu, Kai-Chuan Chan, Yu-Lin Yang
  • Patent number: 11162985
    Abstract: An electronic measuring device includes a main printed circuit assembly and one or more channel modules. At least one channel module includes a channel printed circuit board and a first insulating housing that defines a cavity covering at least part of electrical elements mounted on the channel printed circuit board. A first conductive shielding frame is placed on the first insulating housing and is separated from the channel printed circuit board by the first insulating housing. The first conductive shielding frame covers the electrical elements mounted on the channel printed circuit board. A second insulating housing sandwiches the first conductive shielding frame between the second insulating housing and the first insulating housing which lengthens an electrical path from the first conductive shielding frame to the channel printed circuit board.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: November 2, 2021
    Assignee: Fluke Corporation
    Inventors: Yinhong Yang, Jinbo He, Zhangyan Zhao
  • Patent number: 11162982
    Abstract: A current detection device includes a plane-shaped first coil pattern having a winding number of at least two or more, a magnetic field detection element isolated from the first coil pattern in a direction orthogonal to a plane of the first coil pattern, and arranged to receive a magnetic field formed by the first coil pattern, a driving circuit configured to drive the magnetic field detection element and output an output signal, a second coil pattern, a first substrate on the first coil pattern, a second substrate on the second coil pattern, and a third substrate on the magnetic field detection element. The magnetic field detection element is provided between the first coil pattern and the second coil pattern.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: November 2, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Jia Liu, Toshihiro Tsujimura
  • Patent number: 11156643
    Abstract: A current sensor including a measurement circuit and an electrical conductor having at least one first measurement path defined by a first pickup contact and a second pick-up contact at which a first voltage can be detected across the first measurement path, a first connection contact for electrically contacting a connection element, a second connection contact for electrically contacting a battery pole terminal, and a current feed contact for electrically contacting a device for providing a calibration current. The first measurement path is in series between the first connection contact and the second connection contact. A calibration current supplied at the current feed contact induces a current density distribution in the first measurement path, which converges with a current density distribution in the first measurement path, induced by a load current of equal current intensity supplied at the first connection contact.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: October 26, 2021
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Martin Schramme, Ralf Schröppel, Andreas Aumer
  • Patent number: 11131689
    Abstract: Embodiments herein describe structures of low-force wafer test probes and formation thereof. Structures of low-force wafer test probes and their formation via gray scale etch or electroplating is described. Structures are described that include a lower base structure on top of a substrate and an upper blade structure on top of the lower base structure. In various embodiments, a crown of a C4 bump is accommodated by one or both of: i) a cavity present in the lower base structure; and ii) a height of the upper blade structure. Processes for fabricating probe structures are described that include forming lower base structures upon a substrate and forming upper blade structures on top of the lower base structures. The upper blade structures include at least one blade. Each of the blade(s) include a cutting edge that points toward a center point within the probe structure.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 28, 2021
    Assignee: International Business Machines Corporation
    Inventors: David M. Audette, S J. Chey, Doreen D. DiMilia, Sankeerth Rajalingam, Grant Wagner
  • Patent number: 11131719
    Abstract: A method monitors an electrical assembly which contains a plurality of electrical coils connected in parallel. In the method, the difference in current between the current flowing through the coils and the mean value of the currents flowing through the coils is ascertained for each of the coils connected in parallel. The differences in current are used to identify when an inter-turn short circuit occurs in one of the coils.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: September 28, 2021
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Christoph Armschat, Klaus Pointner
  • Patent number: 11125832
    Abstract: A Multi-Phase Simulation Environment (“MPSE”) is provided which simulates the conductor current and voltage or electric field of multiple phases of an electrical power distribution network to one or more sensing or measuring devices and includes independent control of wireless network connectivity for each sensing or measuring device, independent control of GPS RF to each device, and interface to a back-end analytics and management system.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: September 21, 2021
    Assignee: Sentient Technology Holdings, LLC
    Inventor: Steven Charles Petit