Patents Examined by Robert P Alejnikov, Jr.
  • Patent number: 11119143
    Abstract: A device and method for measuring the internal impedance of an electronic sensor uses configurable gain stages to selectively apply different excitation signals to the sensor under test in order to ensure adequate signal-to-noise ratio to provide accurate measurement of the internal impedance over a broader range of internal impedances than the prior art.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: September 14, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: GuangYang Qu, Yincai Tony Liu, Baotian Hao, Hanqing Wang, Hengfang Mei, Rengui Luo, Yimiao Zhao, Junbiao Ding
  • Patent number: 11112435
    Abstract: An electrical current transducer including a housing, a magnetic core comprising a central passage and a magnetic circuit gap, a magnetic field detector positioned in the magnetic circuit gap, and a leadframe conductor arrangement comprising a primary conductor for carrying the current to be measured and magnetic field detector conductors for connecting the magnetic field detector to an external circuit.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: September 7, 2021
    Assignee: LEM International SA
    Inventors: Jean Marc Peccoux, David Barbagallo, Pascal Morel
  • Patent number: 11112522
    Abstract: Self-testing proximity testing systems and corresponding methods are discussed herein and can include a proximity probe and controller in electrical communication via a cable. A self-testing subsystem can be in communication with the controller and configured to determine whether proximity probes and cables assembled with a controller are compatible or incompatible. The self-testing subsystem can place a known impedance in electrical communication with the controller, modifying a proximity signal output by the controller. When the modified proximity signal differs from a predicted proximity signal by greater than or equal to a threshold amount, the self-testing subsystem can output a first indication indicating that incompatible proximity probes and cables are assembled with a controller.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 7, 2021
    Assignee: Bendy Nevada, LLC
    Inventors: Dan Tho Lu, David Lopez
  • Patent number: 11105844
    Abstract: Power control arrangements for integrated circuit devices are discussed herein. In one example, an assembly includes an integrated circuit device comprising one or more processing cores and a power domain configured to distribute a supply voltage to the one or more processing cores. The assembly also includes a charge injection circuit coupled to the power domain of the integrated circuit device, and configured to selectively couple electric charge into the power domain to predictively offset at least portions of voltage transients in the power domain.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 31, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: William Paul Hovis, Gregory M. Daly, Rich Tat An, Andres Felipe Hernandez Mojica, Garrett Douglas Blankenburg
  • Patent number: 11105875
    Abstract: A method for a NMR device to determine NMR measurement results of a sample from a set of RF signals emitted by the sample and received by the NMR device is disclosed. The method can include: receiving a plurality of RF signals emitted by the sample; determining a phase shift of each signal of the plurality of RF signals; correcting a phase of each signal of the plurality of RF signals; determining a frequency shift of each signal of the plurality of RF signals; shifting each signal of the plurality of RF signals to the predetermined; correcting an additional phase shift of each signal of the shifted plurality of RF signals to generate corresponding plurality of corrected RF signals; and averaging the corrected RF signals to determine the NMR measurement result. In some embodiments, the receiving, determining, correcting, shifting and/or averaging is done by the NMR device.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: August 31, 2021
    Assignees: Aspect Imaging Ltd., Aspect AI Ltd.
    Inventors: Itai Cohen, Yoram Cohen, Tal Cohen
  • Patent number: 11105863
    Abstract: A method and system for re-using the electrical energy of an electronic component under test. The method and system includes combining a first direct current voltage output of an electronic component under test with a second direct current voltage of a device. The combined first direct current voltage and second direct current voltage are regulated to create a power. The power functions a system application. At least one metric of the electronic component under test is monitored.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: August 31, 2021
    Assignee: International Business Machines Corporation
    Inventors: Marc Coq, Randhir S. Malik
  • Patent number: 11099216
    Abstract: Circuits and methods relating to shunt current sensing are provided. A shunt current sensing circuit comprises a shunt resistor for receiving a shunt current. A filtering stage is connected to the shunt resistor and is configured to filter the shunt current. A current sense amplifier is connected to the filtering stage and is configured to receive the filtered shunt current from the filtering stage. The current sense amplifier is configured to sense the filtered shunt current to produce an output voltage. The filtering stage is configured to filter the shunt current such that the output voltage produced by the current sense amplifier (U2) is substantially proportional to the shunt current.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: August 24, 2021
    Assignee: Kongsberg Inc.
    Inventor: Nikolai Panine
  • Patent number: 11092632
    Abstract: A resistance-measuring device mountable to a component of a current-carrying transmission line. The device includes a body having a base and two arms with interconnected first ends and spaced-apart second ends. The arms define a gap therebetween. Each arm has an inner portion facing the gap. The body is displaceable to mount the body about the component and position the component within the gap. The body has an abrading mechanism mounted to the arms. The abrading mechanism has an electrically-conductive abrading element disposed along the arm and facing inwardly toward the gap. The abrading element rubs against an outer surface of the component upon displacing the body to mount the body about the component. A method is also disclosed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 17, 2021
    Assignee: HYDRO-QUEBEC
    Inventors: Samuel Lavoie, Ghislain Lambert
  • Patent number: 11092654
    Abstract: The systems determine the parasitic capacitance of a signal path. That parasitic capacitance is then used to determine a leakage characteristic of the signal path, such as leakage current or leakage resistance. The capability of ATE channels to force current accurately, and to measure time intervals at prescribed voltages, can be used to multiply the accuracy of the force current function. Using these resources, small leakage currents—for example, on the order of 10 nA or less—can be measured.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 17, 2021
    Assignee: Teradyne, Inc.
    Inventor: Marc Spehlmann
  • Patent number: 11067657
    Abstract: Methods for operating a magnetic resonance apparatus and systems therefrom are provided. A method includes generating, via a coil former surrounding a subject or object of interest and disposed in the magnetic resonance apparatus, a plurality of field modes external to the subject or object, measuring for each of the plurality of external field modes, an associated internal field produced within the subject or object, generating, via the coil former a combination of external modes to produce a target internal field in the subject or object, and measuring nuclear magnetic resonance signals due to the resulting field from the combination to acquire an image or spectrum of the subject or object.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: July 20, 2021
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Adam W. Anderson, John Gore
  • Patent number: 11061100
    Abstract: A system comprises a calibration current generator, which provides a calibration current to a first and a second Hall channel, and a bias current generator, which determines a difference between a calibration signal from the Hall channels and a threshold and adjusts a biasing current for the Hall channels based on the difference. In some embodiments, the bias current generator comprises a subtractor coupled to an ADC and a controller coupled between the ADC and a DAC. The subtractor obtains a first and a second signal from the first and second Hall channels, respectively, and subtracts the first from the second to obtain the calibration signal. The controller determines the difference between a sampled signal from the ADC and the threshold and an adjustment to the biasing current based on the difference. The DAC adjusts the biasing current based on a control signal from the controller indicating the adjustment.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: July 13, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Tony Ray Larson, Dimitar Trifonov, Chao-Hsiuan Tsay, Partha Sarathi Basu
  • Patent number: 11054485
    Abstract: A power supply monitoring apparatus includes dual supply path controllers. The controllers continuously test the power supply and the supply paths by alternating power states and monitoring the response from the supply path. If an interruption in normal operation is sensed in one supply path, information regarding the abnormality can be sent to the other controller, thereby allowing for continued operation and monitoring despite the failure of a supply path.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: July 6, 2021
    Assignee: JTEKT Corporation
    Inventor: Takanori Ito
  • Patent number: 11047883
    Abstract: A current sensor is disclosed. The current sensor is substantially immune to stray fields due to the orientation of at least two magnetic field sensors and their respective axes of maximum sensitivity, as well as a total current sensor output that is a weighted difference of the individual magnetic field sensor outputs. The specific orientation of the magnetic field sensors allows for the current sensor to be smaller than known sensors of similar sensitivity.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 29, 2021
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Javier Bilbao de Mendizabal
  • Patent number: 11047903
    Abstract: A display panel and a method for testing for an occurrence of a crack in a display panel are provided. The display panel includes a panel body, a ground line, a first ground connecting portion, a first testing portion, a second ground connecting portion, a second testing portion, and a switch. By measuring a voltage, a resistance, or a current between the first testing portion and the second testing portion, an open circuit in the ground line and a crack in a non-display area can be detected. Therefore, difficulty of confirming if a crack occurs in the display panel is reduced.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 29, 2021
    Assignee: Wuhan China Star Optoelectronics Technology Co., Ltd.
    Inventors: Xin Zhang, Jingfeng Xue, Siwen Miao
  • Patent number: 11035697
    Abstract: A sensor system that simultaneously detects the positions of multiple movable carriages along a motion path. The sensor system includes a plurality of sensors arranged at least along a subsection of the motion path, wherein each sensor is designed for a contactless detection of a measuring element provided on each movable carriage. The sensor system also includes a processing device, which is connected electrically with the sensors and which is designed for a synchronous detection of sensor signals of the sensors.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: June 15, 2021
    Assignee: FESTO SE & CO. KG
    Inventors: Ralf Hartramph, Fabian Albert, Andreas Veit
  • Patent number: 11037715
    Abstract: A magnetic sensor includes a plurality of magnetic detection elements, and a plurality of magnetic field generators associated with the plurality of magnetic detection elements. Each of the plurality of magnetic field generators includes a first ferromagnetic material section and a first antiferromagnetic material section. The first antiferromagnetic material section is in contact with and exchange-coupled to the first ferromagnetic material section. The first ferromagnetic material section has an overall magnetization. The plurality of magnetic field generators includes first and second magnetic field generators configured so that the overall magnetization of the first ferromagnetic material section of the first magnetic field generator is in a different direction from the overall magnetization of the first ferromagnetic material section of the second magnetic field generator.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 15, 2021
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Patent number: 11029341
    Abstract: A low-noise alternating current sensor enables low-cost, large dynamic range current measurements of low-frequency alternating current flows. The low-noise current sensor offers enhanced dynamic range and fine-grained sensitivity unavailable in existing sensor technology. The sensor's dynamic range and sensitivity to low-frequency AC enable new capabilities in precision current control: a valuable and necessary capability in the control and management of circuit considerations, from applications for the grid to transportation, to the control of remote assets.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: June 8, 2021
    Inventor: James William Masten, Jr.
  • Patent number: 11018082
    Abstract: A space transformer for connecting a signal source and probing a semiconductor wafer and a manufacturing method thereof are provided. The space transformer includes a circuit board, a redistribution structure bonded to the circuit board, and a conductive through via providing a vertical conductive path therebetween. The circuit board includes a wiring structure which includes alternately stacked dielectric layers and patterned wiring layers, and first contact pads of the patterned wiring layers connect the signal source. The redistribution structure is thinner than the circuit board and includes second contact pads for probing the semiconductor wafer. A pitch of adjacent second contact pads is finer than that of adjacent first contact pads. The conductive through via penetrates through the circuit board, and the conductive through via is laterally covered by the dielectric layers and is laterally and physically in contact with the patterned wiring layers.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: May 25, 2021
    Inventor: Dyi-Chung Hu
  • Patent number: 11018573
    Abstract: A system and method for power supply ripple detection is disclosed. A voltage across one or more capacitors of the power supply is measured. An AC ripple voltage component of the capacitor voltage is then filtered and rectified into a DC signal. A level of ripple represented by the DC signal is then compared to threshold values to assess a health of the power supply. In one implementation, the power supplies provide power to control panels of one or more building management systems. The power supplies determine and report information concerning health of the power supplies to the control panels, the information including the DC signal itself and the result of the comparison of the DC signal to the threshold values. A cloud-based connected services system then receives and analyzes the information concerning health of the power supplies forwarded from control panels of multiple building management systems to determine trends.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 25, 2021
    Assignee: Johnson Controls Fire Protection LP
    Inventor: Daniel Paul Cianfrocco
  • Patent number: 11002563
    Abstract: A first amplifier has an input to receive a Hall-signal output current from a first Hall element and has an output to output feedback current in response to the received Hall-signal output current. The Hall-signal output current is impeded by an impedance of the first Hall element. The feedback current is coupled to counterpoise the Hall-signal output current at the input, and a voltage at the output is an amplified Hall output signal. A second amplifier generates a high-frequency portion output signal in response to a difference between the amplified Hall output signal and a Hall-signal output signal from a second Hall element. A filter reduces high-frequency content of the high-frequency portion output signal and generates an offset correction signal. A third amplifier generates a corrected Hall signal in response to a difference between the amplified Hall output signal and the offset correction signal.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: May 11, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arup Polley, Srinath Ramaswamy, Baher S. Haroun, Rajarshi Mukhopadhyay