Patents Examined by Robert Tavlykaev
  • Patent number: 10036862
    Abstract: In a connector, a guide member to which an optical connector is fixed is provided with a first guide portion. The optical connector is provided with a second guide portion at a tip portion, in a mating direction, of a holding member thereof. The optical connector has a ferrule with a tip, and the tip is located between the first guide portion and the second guide portion in the mating direction. When the connector is connected to a structural body and before the optical connector reaches an accommodating portion, the first guide portion performs rough positioning of the optical connector with respect to the accommodating portion in a plane perpendicular to the mating direction. When the connector is connected to the structural body, the second guide portion guides the optical connector into the accommodating portion.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: July 31, 2018
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Naoki Katagiyama, Takayuki Tanaka, Hideo Sugimoto, Hideto Shimazu
  • Patent number: 10031304
    Abstract: The present disclosure includes systems and apparatuses for an optical fiber management system. One embodiment of an optical fiber management system includes a cabinet comprising a system of building blocks that make up a rail-mounting system and an optical fiber management apparatus housed within one of the building blocks. The optical fiber management apparatus can comprise a housing, an adaptor plate resiliently connected to the housing, a splice tray, a housing cover, a radius limiter, and a base configured for integrated slack storage of at least one of buffer tube and ribbon cable.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: July 24, 2018
    Assignee: Clearfield, Inc.
    Inventors: John P. Hill, Walter E. Power, II, Randy T. VanHorn
  • Patent number: 10031305
    Abstract: A fiber distribution system (10) includes a fiber distribution hub (20, 300); at least one fiber distribution terminal (30, 100); and a cable (40) wrapped around a spool (110) of the fiber distribution terminal (30, 100). The fiber distribution terminal (30, 100) includes a spool (110) and a management tray (120) that rotate together. A second connectorized end (40b) of the cable (40) is held at a fiber optic adapter (125) on the tray (120). After dispensing the first connectorized end (40a) to the hub (20), an optical splitter (70, 130, 140) can be mounted to the tray (120). The splitter (26, 70, 130, 140, 306) has output adapters at which patch cords (50) can be inserted to connect subscribers to the system. The fiber distribution hub can use the same format of splitters (26, 70, 130, 140, 306). Other distributed splitter systems are provided with splicing and/or adding of splitters as needed.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: July 24, 2018
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Samuel Leeman, David Jan Irma Van Baelen, Stephane Collart, Vincent Francois Michel Cnop
  • Patent number: 10031290
    Abstract: The invention relates to an optical interference filter device which defines a first periodic filter frequency response between a first filter output port and a filter input port and a second periodic filter frequency response having the same free spectral range as the first periodic frequency response between a second filter output port and the filter input port. The first and second periodic filter frequency responses are shifted versus each other by a predetermined optical frequency distance.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: July 24, 2018
    Assignee: ADVA Optical Networking SE
    Inventor: Benjamin Wohlfeil
  • Patent number: 10007067
    Abstract: A wedge device for use with a fiber optic connector comprises an insert body comprising a light transmissive material. The insert body defines a wedge portion integrally extending into a light pass structure, the light pass structure terminating in a single upper face distal from the wedge portion. For example, wedge device may be a unitary member formed entirely of the light transmissive material.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: June 26, 2018
    Assignee: AFL Telecommunications LLC
    Inventors: Daigo Saito, Roger Vaughn
  • Patent number: 10007080
    Abstract: A telecommunications closure includes a base, a cover coupled to the base, and a first interior volume defined between the cover and the base. The cover includes a compartment having an opening and defining a second interior volume. The telecommunications closure also includes a flexible telecommunications line having a first end located within the first interior volume and a second end located outside of the first interior volume. The second end of the telecommunications line has a connector for coupling to other telecommunications lines. A portion of the flexible telecommunications line passes through the opening of the compartment. The telecommunications closure also includes at least one sealing member positioned in the second interior volume of the compartment to seal the flexible telecommunications line in the opening.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: June 26, 2018
    Assignee: Corning Research & Development Corporation
    Inventors: Alan Duncan Burkett, Monique Lise Cote, David Kimondo Waruiru
  • Patent number: 10007071
    Abstract: Optical bodies having a total internal reflection surface and a short optical path length along with electronic devices using the optical bodies are disclosed. The optical body comprises at least one optical channel and comprises a total internal reflection (TIR) surface and a lens located on a bottom of the optical body. By way of example, the short optical path length may have the lens of the optical body at a distance of 500 microns or less from a front end of the optical module. In another embodiments, the optical body may include a window adjacent to the front end. Methods for making an optical connector are also disclosed.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 26, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Micah Colen Isenhour, James Phillip Luther
  • Patent number: 9995891
    Abstract: An optical module includes a case including an optical filter, a receptacle coupled to the case, an optical receiver, and an optical transmitter. The receptacle includes a recess formed along an outer circumferential surface thereof. The recess may be formed by a first side wall and a second side wall which face each other and a bottom surface coupling the first side wall to the second side wall. Further, at least one of the first side wall and the second side wall may include an insulating material.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 12, 2018
    Assignee: OE SOLUTIONS CO., LTD.
    Inventors: Se Hee Han, Eun Kyo Jung, Na Young Goh, Tae Kyun Kim
  • Patent number: 9983352
    Abstract: The present invention relates to an optical fiber for an SPR sensor, characterized in that the optical fiber is comprised of a core layer and a cladding layer surrounding the core layer, and the cladding layer is doped with metal nanoparticles.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 29, 2018
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Seongmin Ju, Won Taek Han
  • Patent number: 9971228
    Abstract: In one aspect, a device for generating triplet photons is disclosed, which includes a waveguide extending from a proximal end for receiving pump radiation to a distal end through which triplet photons generated via nonlinear interaction of the pump radiation with the waveguide exit the waveguide, where the waveguide is configured such that the triplet photons generated within the waveguide reach its distal end at a rate in a range of about 0.05 triplet photons/second/mW and 0.3 triplet photons/second/mW, e.g., in a range of about 0.1 triplet photons/second/mW to about 0.2 triplet photons/second/mW.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 15, 2018
    Assignee: President And Fellows of Harvard College
    Inventors: Eric Mazur, Christopher Courtney Evans, Michael Gerhard Moebius, Orad Reshef, Sarah E. Griesse-Nascimento
  • Patent number: 9964711
    Abstract: Disclosed herein is an optical cable connection comprising a buffer sleeve having an inner portion and an outer portion; where the inner portion comprises an optical core that is operative to transmit light; and a tight buffer layer disposed on the core; where the buffer sleeve is trimmed back at its end to provide an exposed protruding length of the tight buffer layer with the core included therein; where the outer portion of the buffer sleeve is configured to form a socket that is operative to receive a connector ferrule; where the connector ferrule comprises; an annular tubular plug having a center opening; where the annular tubular plug mates with the socket formed in the outer portion of the buffer sleeve; a ferrule seated in the plug; where the ferrule receives the exposed protruding length of the tight buffer layer that extends axially outwardly from the buffer sleeve into the center opening of the ferrule.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 8, 2018
    Assignee: OFS FITEL, LLC
    Inventors: John E Pacini, Brian Violette
  • Patent number: 9946044
    Abstract: An equipment cabinet with a movable stile is disclosed herein. In an exemplary embodiment, the equipment cabinet comprises a housing body defining a front opening, independently operable first and second doors, and a movable stile positioned within the front opening and between the first and second doors. First and second sealing pads are positioned between the movable stile and the housing body when the movable stile is in a closed position. First and second sealing gaskets, respectively, are attached to interiors of the first and second doors, where at least a portion of each of the first and second sealing gaskets are positioned between the movable stile and the first or second doors when the first and second doors are closed. Thus, the equipment cabinet has independently operable doors and facilitates increased access to an interior of the equipment cabinet while maintaining an environmental seal.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: April 17, 2018
    Assignee: CCS Technology, INC.
    Inventors: Grzegorz Konrad Gralewski-Sek, Michal Ruda
  • Patent number: 9946033
    Abstract: A fiber optic connector includes a ferrule configured to receive and support one or more optical fibers and at least one component coupled to a surface of the ferrule by an adhesive. The at least one component overlays a footprint area defined on the surface to which the adhesive is applied, and the surface has a plurality of recessed formations within the footprint area to accommodate the adhesive.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 17, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Kevin Eugene Elliott
  • Patent number: 9946024
    Abstract: Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may include rows of continuous waveguides with scatterers extending throughout a length of said perturbed waveguides a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSGC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSGC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating coupler may comprise individual scatterers between the perturbed waveguides.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 17, 2018
    Assignee: Luxtera, Inc.
    Inventors: Lieven Verslegers, Attila Mekis
  • Patent number: 9921377
    Abstract: A substrate comprises multiple interposers. Each interposer includes interposer elements, where an optical device is coupled to at least some of the interposer elements; two passages formed through the interposer, where each passage is registered with respect to the interposer elements; two blind holes formed in a surface of the interposer, where each blind hole is concentric with a different passage; two annular troughs formed in the surface, each concentric with a different passage, and an annular area separates the annular troughs from an outer diameter of the corresponding concentric passage; and two spherical registration elements, where each registration element is positioned on uncured adhesive on one of the annular areas, where the passages enable a vacuum to be drawn through such that the registration elements are pulled toward the surface of the interposer to self-align to the inner diameter of the blind holes.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: March 20, 2018
    Assignee: Hewlett Packard Enterprise Department LP
    Inventors: Paul K Rosenberg, Sagi V Mathai, Michael Renne Ty Tan
  • Patent number: 9910235
    Abstract: A communication enclosure is described that includes an enclosure body having a first body portion and a second body portion. An adapter mounting mechanism is disposed in the first body portion, and a connector adapter mounted into the mounting mechanism that is configured to accept an optical fiber connector. The enclosure includes at least one integrated tool for terminating field mountable optical fiber connectors wherein the at least one integrated tool is disposed on one of the first body portion and the second body portion. In an exemplary aspect, the at least one integrated tool is a connector polishing platform.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: March 6, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Donald K. Larson, Joseph C. Sawicki, Zachary M. Thompson, William J. Clatanoff
  • Patent number: 9891396
    Abstract: An electrical interface includes an insulating body, first electrodes, and second electrodes. The insulating body includes a first front edge surface and a second front edge surface facing in a direction along a transmission direction of an optical signal at an optical interface and having different heights. The first electrode and the second electrode are provided on the insulating body so as to have a thickness from the first front edge surface and the second front edge surface in a direction of the height. A first flexible wiring board and a second flexible wiring board include a first area and a second area extending in directions along the first front edge surface and the second front edge surface, respectively, of the insulating body, and include, in the first area and the second area, first pads and second pads electrically connected with the first electrodes and the second electrodes.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 13, 2018
    Assignee: OCLARO JAPAN, INC.
    Inventor: Takuma Ban
  • Patent number: 9874705
    Abstract: An optical waveguide module includes an optical waveguide sheet including multiple optical waveguides, and a light-emitting device and a light-receiving device each positioned over a surface of the optical waveguide sheet. At least one of the optical waveguides includes a first mirror, a second mirror, and a slit. The first mirror is configured to reflect light entering the corresponding optical waveguide from its first end to the light-receiving device or to reflect light emitted from the light-emitting device toward the first end of the corresponding optical waveguide. The second mirror is configured to reflect light entering the corresponding optical waveguide from its second end toward the surface of the optical waveguide sheet. The slit is provided between the second mirror and the second end of the corresponding optical waveguide. The corresponding optical waveguide is discontinuous across the slit.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: January 23, 2018
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Rie Gappa, Osamu Daikuhara, Shinichiro Akieda, Satoshi Moriyama, Hongfei Zhang, Mitsuki Kanda
  • Patent number: 9874713
    Abstract: Aspects of the present disclosure relates to an indexing terminal including a multi-fiber ruggedized de-mateable connection location, a first single-fiber ruggedized de-mateable connection location and a second single-fiber ruggedized de-mateable connection location. The multi-fiber ruggedized de-mateable connection location includes a plurality of fiber positions with one of the fiber positions optically coupled to the first single fiber ruggedized de-mateable connection location.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 23, 2018
    Assignee: CommScope Technologies LLC
    Inventors: Thomas Marcouiller, Oscar Fernando Bran de León, Erik David Bishop, William B. Bryan, Chien-An Chen, Gary W. Adams
  • Patent number: 9864109
    Abstract: A plasmonic device having a transparent conducting oxide (TCO) waveguide and a tunable voltage applied across the TCO and a metal layer for modulating an input optical signal.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 9, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Ho Wai Lee, Stanley Burgos, Georgia Papadakis, Harry A. Atwater