Patents Examined by Robert Tavlykaev
  • Patent number: 10551572
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A fiber protection device made of a thin transparent film, which includes an adhesive layer, is applied over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. According to one aspect, the film is part of a cartridge that provides structural support for the film to facilitate application of the fiber protection device. The film may be divided by perforate patterns that define one or more fiber protection devices formed by the film. The assembly method can include usage of an applicator base plate upon which the cartridge is mounted. According to another aspect, the film may be part of a single-use disposable pod for application of a single fiber protection device.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 4, 2020
    Assignee: Ultra Communications, Inc.
    Inventors: Charles B. Kuznia, Man W. Wong
  • Patent number: 10545305
    Abstract: A fiber distribution system (10) includes a fiber distribution hub (20, 300); at least one fiber distribution terminal (30, 100); and a cable (40) wrapped around a spool (110) of the fiber distribution terminal (30, 100). The fiber distribution terminal (30, 100) includes a spool (110) and a management tray (120) that rotate together. A second connectorized end (40b) of the cable (40) is held at a fiber optic adapter (125) on the tray (120). After dispensing the first connectorized end (40a) to the hub (20), an optical splitter (70, 130, 140) can be mounted to the tray (120). The splitter (26, 70, 130, 140, 306) has output adapters at which patch cords (50) can be inserted to connect subscribers to the system. The fiber distribution hub can use the same format of splitters (26, 70, 130, 140, 306). Other distributed splitter systems are provided with splicing and/or adding of splitters as needed.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: January 28, 2020
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Samuel Leeman, David Jan Irma Van Baelen, Stephane Collart, Vincent Francois Michel Cnops
  • Patent number: 10539746
    Abstract: The embodiment relates to an optical connection component including a bent optical fiber having a bent portion including a region where a curvature of the bent portion is maintained at 0.4 [1/mm] or more while substantially no bending stress remains. The bent optical fiber comprises a core, a first cladding, a second cladding, and a third cladding. Based on the third cladding, a relative refractive index difference ?1 of the core, a relative refractive index difference ?2 of the first cladding, and a relative refractive index difference ?3 of the second cladding satisfy relationships of ?1>?2>?3 and ?3 <?0.5[%]. The product V3 of the ?3 and a cross-sectional area S of the second cladding is less than ?200 [%ยท?m2]. The curvature in the bent portion is 0.6 [1/mm] or less over an entire length of the bent portion.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: January 21, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Yasuomi Kaneuchi, Yuuichi Mitose
  • Patent number: 10527800
    Abstract: The present embodiment makes it possible to reduce the height of an optical connection component including a bent optical fiber having a bent-shape part and a fiber fixing component in a safer and more stable manner compared to a conventional technique. Before the fiber fixing component is fixed to the bent optical fiber, formation of a bent portion using the fiber fixing component obliquely disposed and heating of the bent portion are repeated a plurality of times for the optical fiber to which the fiber fixing component is movably fitted. At that time, movement of the optical fiber and the heating of the bent portion are alternately repeated. Thus, a plurality of bent portions where stress is released is formed in the optical fiber along the longitudinal direction thereof.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 7, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuomi Kaneuchi, Takashi Sasaki
  • Patent number: 10527801
    Abstract: The present disclosure discloses a plug protection cap that includes a main body, a connecting sleeve, and a traction stub. An accommodating cavity is disposed in the main body. An inlet is through the accommodating cavity that is disposed on an end face of one end of the main body. One end of the connecting sleeve detachably sheathes one end that is of the main body and that is away from the inlet, and the other end of the connecting sleeve is connected to one end of the traction stub in a rotatable manner. The present disclosure further discloses an optical fiber connector assembly, a fiber plug, and a network device.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: January 7, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xiongwei Yan, Wenxin Wu, Yuliang Wang, Xuesong Huang
  • Patent number: 10520690
    Abstract: Narrow width fiber optic connectors having spring loaded remote release mechanisms to facilitate access and usage of the connectors in high density arrays. A narrow width fiber optic connector comprises a multi-fiber connector, wherein a width of said narrow width fiber optic connector is less than about 5.25 mm, a housing configured to hold the multi-fiber connector and further comprising a connector recess, and a pull tab having a ramp area configured to disengage a latch of one of an adapter and an SFP from said connector recess. The pull tab may include a spring configured to allow the latch of one of the adapter and the SFP to engage with the connector recess.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 31, 2019
    Assignee: Senko Advanced Components, Inc
    Inventors: Kazuyoshi Takano, Jeffrey Gniadek
  • Patent number: 10520667
    Abstract: A light guide apparatus that can redirect light impinging on the apparatus over a wide range of incident angles and can concentrate light without using a tracking system and methods for fabrication. This apparatus uses conditions of total internal reflection and refraction near the critical angle for total internal reflection (near TIR) in order to trap light within the apparatus.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 31, 2019
    Assignee: Agira, Inc.
    Inventor: Bal Mukund Dhar
  • Patent number: 10509170
    Abstract: Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may include rows of continuous waveguides with scatterers extending throughout a length of the perturbed waveguides a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSGC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSGC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating coupler may comprise individual scatterers between the perturbed waveguides.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 17, 2019
    Assignee: Luxtera, Inc.
    Inventors: Lieven Verslegers, Attila Mekis
  • Patent number: 10502913
    Abstract: Polymeric compositions comprising a polybutylene terephthalate, an ethylene-based polymer, and a maleated ethylene-based polymer. Optical cable components fabricated from the polymeric composition. Optionally, the polymeric composition can further comprise one or more additives, such as a filler. The optical fiber cable components can be selected from buffer tubes, core tubes, and slotted core tubes, among others.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: December 10, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: William J. Harris, Mohamed Esseghir, Gangwei Sun
  • Patent number: 10488601
    Abstract: Provided is an optical connector plug which, even when a predetermined load is applied to a plug frame and the plug frame is warped to a vertical upper side of a guide protrusion portion, prevents disengagement of an engagement head and an optical conductor adaptor. In an optical connector plug, an axial front end of an engagement head of an engagement latch is separated axially rearward from an axial rear end of a guide protrusion portion, and is close to the axial rear end of the guide protrusion portion. According to the optical connector plug, when a predetermined load is applied to a plug frame and the plug frame is warped to a vertical upper side of the guide protrusion portion, the axial front end of the engagement head is supported by the axial direction rear of the guide protrusion portion, so that the engagement head is prevented from moving vertically downward from the guide protrusion portion.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: November 26, 2019
    Assignee: SEIKOH GIKEN CO., LTD.
    Inventors: Junji Taira, Masayuki Jibiki, Yohei Takaishi, Norimasa Arai
  • Patent number: 10488611
    Abstract: An optic fiber system for mounting in a rack, cassette and front plate are disclosed. A fiber optic cassette receives a pair of opposed rails on opposite inner surfaces of a housing. Catches on the fiber optic cassette comprise biased tabs which engage grooves within the rails thereby releasable securing the cassette into the housing. Catches may be provided at both ends of the cassette allowing the cassette to be inserted from either end of the housing. The cassette comprises removeable front plate which is secured to it using a snap fit. The removeable plate can be used either with the cassette or as a standalone within the housing.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: November 26, 2019
    Assignee: BELDEN CANADA INC.
    Inventor: Marc Fontaine
  • Patent number: 10481342
    Abstract: A dust protector of a fiber optic connector according to the present disclosure includes a dust cap and a cleaning component. The dust cap includes a frame and a cover. The frame is configured to cover the front end of a fiber optic connector. The cover is pivotally coupled to the frame. The cleaning component is disposed on the frame to clean the fiber optic connector. The cover is configured to be closed to cover the cleaning component and to be flipped open to expose the cleaning component. The present disclosure further provides another dust protector of a fiber optic connector. In addition to being used to protect the fiber optic connector from contamination, the dust protector of the present disclosure provides additional value that avoids the need to use a separate component to clean a fiber end of a fiber optic connector.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 19, 2019
    Assignee: PROTAI PHOTONIC CO., LTD
    Inventors: Jyh-Cherng Yang, Yu-Kai Chen
  • Patent number: 10473852
    Abstract: A light guide apparatus that can redirect light impinging on the apparatus over a wide range of incident angles and can concentrate light without using a tracking system and methods for fabrication.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 12, 2019
    Assignee: Agira, Inc.
    Inventor: Bal Makund Dhar
  • Patent number: 10473877
    Abstract: A telecommunications assembly includes a chassis and a plurality of modules removably mounted within the chassis. The modules include one or more fiber optic signal input locations. The modules include optical equipment for splitting the input signals into customer output signals.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: November 12, 2019
    Assignee: CommScope Telecommunications (Shanghai) Co., Ltd.
    Inventor: Yuanzhe Zhang
  • Patent number: 10466426
    Abstract: A drawer structure, etc. of an optical fiber from an optical module is disclosed. An optical fiber drawer structure is configured by a roughly cylindrical passage through which an optical fiber passes being connected to a housing. The passage includes a sleeve connected to an outer periphery of the housing and a lid part connected to a tip side of the sleeve. The interior of the passage (sleeve) is provided with a fixing member to fix the optical fiber to the passage. A reduced diameter part and an expanded diameter part are formed in the lid part.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: November 5, 2019
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Etsuji Katayama, Masakazu Yoshihara, Yuta Ishige
  • Patent number: 10466514
    Abstract: Structures for an electro-optic modulator and methods of fabricating such structures. A first plurality of cavities are formed in a bulk semiconductor substrate. A passive waveguide arm includes a first core arranged over the first plurality of cavities. The passive waveguide arm has an input port and an output port that is spaced lengthwise from the input port. An epitaxial semiconductor layer is arranged over the bulk semiconductor substrate, and includes a second plurality of cavities. An active waveguide arm includes a second core that is arranged over the second plurality of cavities. The second core of the active waveguide arm is coupled with the input port of the first core of the passive waveguide arm, and the second core of the active waveguide arm is also coupled with the output port of the first core of the passive waveguide arm.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: November 5, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Steven M. Shank, Siva P. Adusumilli
  • Patent number: 10459169
    Abstract: An optical assembly includes a first grating device configured to: receive a light beam that includes an optical signal with a particular wavelength from a fiber; and change a propagation direction of the optical signal according to the particular wavelength of the optical signal. The optical assembly also includes a second grating device configured to: receive the optical signal outputted from the first grating device; change the propagation direction of the optical signal according to the particular wavelength of the optical signal; and direct the optical signal onto a grating coupler. The first grating device and the second grating device are configured to satisfy a plurality of configuration constraints.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: October 29, 2019
    Assignee: Finisar Corporation
    Inventors: Xiaojie Xu, Thomas W. Mossberg, Tengda Du, Christoph M. Greiner, Dmitri Iazikov
  • Patent number: 10437001
    Abstract: A drogue and mandrel are provided for securing a fiber optic link in which the mandrel has halves with winding knobs on the ends of the mandrel. One half includes pegs for positioning the link with a fiber optic splice between the pegs. The halves attach at the pegs such that the knobs can wind to secure the link on a lined surface of one of the halves. The halves have grooves to protect the link from breaking during winding. A pair of guide tubes and the mandrel including the fiber optic link are positioned in the drogue with the tubes tangent to the mandrel to ensure that there is no obstruction. A second half of the mandrel features arresting teeth that interfaces with recesses threaded winding knobs to prevent unwinding. A circumferential fin assists with inducing drag of the drogue.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: October 8, 2019
    Inventors: Michael M Gifford, Frank S LiVolski, Zachary A Whittaker
  • Patent number: 10416398
    Abstract: Embodiments of the present disclosure provide an optical assembly for high speed optical communications by combining a cover assembly including a lens and a cover post with a body assembly including a lens, reflection prism and body hole, which takes only a few passive optical alignments for providing aligned optical elements that have required multiple complex and sophisticated processes.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: September 17, 2019
    Assignee: OPTOMIND INC.
    Inventors: Yung-sung Son, Bong-cheol Kim, Sang-Shin Lee, Yong Geon Lee
  • Patent number: 10409019
    Abstract: An optical cable assembly is provided. The cable assembly includes a plurality of subunits surrounded by an outer cable jacket, a furcation unit and optical connectors coupled to the end of each of the subunits. Each of the subunits includes an inner jacket, a plurality of optical fibers; and a tensile strength element. The first tensile strength element and the inner jackets of each subunits are coupled to the furcation unit, and the optical fibers and tensile strength elements of each subunit extend through the furcation unit without being coupled to the furcation unit. The subunit tensile strength element and optical fibers of each subunit are balanced such that both experience axial loading applied to the assembly and, under various loading conditions, the compression of the subunits is controlled and/or the axial loading of the optical fibers is limited to allow proper function of the optical connector.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: William Eric Caldwell, Terry Lee Ellis, William Carl Hurley, William Welch McCollough, Mark Tracy Paap