Patents Examined by Robert Tavlykaev
  • Patent number: 10859781
    Abstract: Fiber distribution systems, terminals and tap boxes that provide a reconfigurable and expandable system of hardened connections. An aerial terminal may include at least one feeder port and a plurality of distribution ports, each of the at least one feeder port and the plurality of distribution ports being sealable ports configured to receive one of a duct and a connector, where the connector is configured to interface with a drop type cable. The terminal may include an expandable module configured to receive a splitter. The terminal may be configured to receive a fiber through the feeder port and to output a plurality of fibers through the plurality of distribution ports.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: December 8, 2020
    Assignee: Clearfield, Inc.
    Inventors: John Paul Hill, William J. Cruzen
  • Patent number: 10855456
    Abstract: A quantum cryptography apparatus and system includes a photon emitter, a photon receiver, a first photodetector, a second photodetector, a first polarization optic, and a second polarization optic. The photon emitter is configured to emit a photon at a wavelength. The photon receiver is coupled to the photon emitter by at least one quantum channel. The photon receiver includes the first polarization optic configured to output the emitted photon in a polarization state. The first photodetector is configured to detect the emitted photon from the output of the first polarization optic. The second photodetector is configured to detect a backflash from the first photodetector. The second polarization optic is between the first photodetector and the second photodetector. The second photodetector and the second polarization optic are configured to internally calibrate the photon receiver.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: December 1, 2020
    Assignee: The MITRE Corporation
    Inventors: Daniel T. Stack, Stephen P. Pappas, Brandon V. Rodenburg, Colin P. Lualdi
  • Patent number: 10845540
    Abstract: The present invention relates to a low-profile splice protection system for protecting multi-fibre fusion splice sites. The splice protection system comprises coating material to package the splice site and may comprise a protective housing.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: November 24, 2020
    Assignee: CommScope Telecommunications (Shanghai) Co. Ltd.
    Inventors: Liming Wang, Xiaodong Zhang
  • Patent number: 10838135
    Abstract: An apparatus for distributing light from a planar waveguide through an array of linear cylindrical lenses formed in a major surface of the waveguide, and a method of making the same. Light received on an edge of the waveguide is propagated transmissively and retained by total internal reflection, except in response to impinging upon light deflecting elements which sufficiently redirect the light to escape the waveguide such that the extracted from the waveguide is further redirected and redistributed through the array of linear cylindrical lenses.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 17, 2020
    Assignee: SVV TECHNOLOGY INNOVATIONS, INC.
    Inventor: Sergiy Vasylyev
  • Patent number: 10830944
    Abstract: An opening and closing detection sensor of the present invention includes a fixed base, a moving base, an optical fiber, and a moving member. The moving base is disposed so as to be movable relative to the fixed base. The optical fiber includes an FBG part where a Bragg wavelength varies responding to an interval between the fixed base and the moving base. The moving member moves between a first position corresponding to either one of an opened state or a closed state of an object and a second position corresponding to the other state. The moving member includes a locking part. The locking part abuts on the moving base between a third position located between the first position and the second position, and the second position, thereby moving the moving base together with the moving member, and moving the moving base in a direction separated from the fixed base.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: November 10, 2020
    Assignee: CMIWS CO., LTD.
    Inventor: Masahito Wakahara
  • Patent number: 10823917
    Abstract: The embodiment relates to an optical connection component including a bent optical fiber having a bent portion including a region where a curvature of the bent portion is maintained at 0.4 [l/mm] or more while substantially no bending stress remains. The bent optical fiber comprises a core, a first cladding, a second cladding, and a third cladding. Based on the third cladding, a relative refractive index difference ?1 of the core, a relative refractive index difference ?2 of the first cladding, and a relative refractive index difference ?3 of the second cladding satisfy relationships of ?1>?2>?3 and ?3<?0.5 [%]. The product V3 of the ?3 and a cross-sectional area S of the second cladding is less than ?200 [%ยท?m2]. The curvature in the bent portion is 0.6 [l/mm] or less over an entire length of the bent portion.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: November 3, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Yasuomi Kaneuchi, Yuuichi Mitose
  • Patent number: 10826150
    Abstract: The present invention relates to a connector (1), in particular for connecting an optical fiber (3) and an electrical conductor, comprising a printed circuit board (5); at least one electrical contact (7) which in each case has at least one internal conductor contact (11) and one external conductor contact (9); at least one electrical conductor (13) which has at least one internal conductor (15), one external conductor (17) and also one dielectric (19); wherein the electrical conductor (13) is connected, at a first end (21), to the electrical contact (7), and wherein the electrical conductor (13) is connected, at a second end (23), to an electrical component (25) which is arranged on the printed circuit board (5).
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: November 3, 2020
    Assignee: ROSENBERGER HOCHFREQUENZTECHNIK GMBH & CO. KG
    Inventor: Bernd Rosenberger
  • Patent number: 10811848
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: October 20, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Patent number: 10809448
    Abstract: A nano-structure includes an outer area at an edge of the nano-structure. A width of the outer area defined by a distance from the edge of the nano-structure is less than 100 ?m. A depth of the nano-structure in the outer area changes gradually between 0% and at least 50% of a maximum depth of the nano-structure. A method includes forming an etch mask on a substrate and etching the substrate with the etch mask using an ion beam to form a nano-structure in the substrate. The etch mask includes an outer area near an edge of the etch mask. A width of the outer area defined by a distance from the edge of the etch mask is less than 100 ?m. A duty cycle of the etch mask in the outer area changes gradually between at least 10% and at least 90%.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 20, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventor: Giuseppe Calafiore
  • Patent number: 10809469
    Abstract: A method and a system for active alignment of a light source assembly along three dimensions in an optical bench plane are provided. The light source assembly, preferably a laser diode on its sub-mount, is actively aligned in three dimensions, longitudinal, transection and vertical along the optical bench. The light source assembly is attached on edge of the optical bench, via adhesion processes, such as solder welding. Optical components such as collimator lens, isolator, etc are first passively aligned on the optical bench using alignment marks and epoxy slots provided on the surface of the optical bench. Then, laser diode, mounted on a laser diode sub-mount, is aligned in X and Z direction. Thereafter, the light source assembly is pushed towards the edge of the optical bench and attached with the edge via a solder joint. Also, a compensator can be actively aligned until the optimum light intensity achieved.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: October 20, 2020
    Assignee: Cloud Light Technology Limited
    Inventors: Vincent Wai Hung, Vivian Wei Ma, Wing Keung Mark Mak, Chih Hsun Lin
  • Patent number: 10801865
    Abstract: A device for fluid analysis including an integrated computational element (ICE), a sample cell that optically interacts the ICE with a sample to generate a computation light associated with a characteristic of the sample, and a fiber sensor that receives the computation light and converts the computation light into a heat, is provided. The fiber sensor is coupled with a detector through an optical link, and is configured to return a portion of probe light through the optical link to the detector based on the heat converted. A method for using the device for performing fluid analysis is provided. A system for fluid analysis including at least one device as above is also provided.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: October 13, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michel Joseph Leblanc, David L. Perkins, Xinwei Lan
  • Patent number: 10797191
    Abstract: A light trapping optical structure employing an optically transmissive layer with a plurality of light deflecting elements. The transparent layer is defined by opposing broad-area surfaces extending parallel to each other. The light deflecting elements deflect light propagating transversely through the optically transmissive layer at a sufficiently high bend angle with respect to a surface normal, above a critical angle of a Total Internal Reflection. The deflected light is retained by means of at least TIR in the system which allows for longer light propagation paths through a photoabsorptive layer that may be associated with the optically transmissive layer for an improved light absorption. The light trapping optical structure may further employ a focusing array of light collectors being pairwise associated with the respective light deflecting elements.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: October 6, 2020
    Assignee: SVV TECHNOLOGY INNOVATIONS, INC.
    Inventor: Sergiy Vasylyev
  • Patent number: 10788622
    Abstract: Embodiments of the invention include a hybrid or electro-optical cable. The cable includes an optical fiber having a core region and a cladding region formed around the core region, and at least one coating region formed around the optical fiber cladding region. The coating region includes at least one first electrically conductive carbon structure, at least one second electrically conductive carbon structure, and an electrically insulating material coupled between the first electrically conductive carbon structure and the second electrically conductive carbon structure. The cable provides optical energy transmission via the optical fiber. The cable also provides electrical energy transmission via the at least one first and second electrically conductive carbon structures.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: September 29, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Daniel Hendrickson, Valerie Anne Hill
  • Patent number: 10783111
    Abstract: A modular digital optical gunsight (MDOG) peripheral module validation device includes an MDOG data connector configured to connect to an MDOG peripheral module and to receive and/or transmit MDOG data in a first format to or from the MDOG peripheral module, a translation module configured to translate the MDOG data in the first format to a second format that is compatible with a personal computer (PC), and a PC data connector configured to connect the validation device to a PC and to receive and/or transmit the MDOG data in the second format to the PC. The translation module can be configured to translate data in the second format to the first format.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 22, 2020
    Inventor: Samuel L. Moseman
  • Patent number: 10772485
    Abstract: An apparatus may include an instrument including an elongated shaft and a shape sensor including an elongated optical fiber extending within the elongated shaft at a first radial distance from a neutral axis. The apparatus may also comprise a reference sensor disposed within the elongated shaft. The shape sensor may be fixed in a known first position relative to the reference sensor. The apparatus may also comprise a twist resistant feature disposed within the elongated shaft. The twist resistant feature may be coupled to the shape sensor to reduce twisting of the elongated optical fiber relative to the elongated shaft while permitting axial translation of the elongated optical fiber within the elongated shaft. The shape sensor may be coupled to the twist resistant feature at a known second position relative to the reference sensor.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: September 15, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Randall L. Schlesinger, Stephen J. Blumenkranz, Christopher R. Carlson, Vincent Duindam, Anoop B. Kowshik, Timothy D. Soper
  • Patent number: 10746921
    Abstract: Structures including a waveguide arrangement and methods of fabricating a structure that includes a waveguide arrangement. A second waveguide spaced in a lateral direction from a first waveguide, a third waveguide spaced in a vertical direction from the first waveguide, and a fourth waveguide spaced in the vertical direction from the second waveguide. The third waveguide is arranged in the lateral direction to provide a first overlapping relationship with the first waveguide. The fourth waveguide is arranged in the lateral direction to provide a second overlapping relationship with the second waveguide.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: August 18, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yusheng Bian, Ajey Poovannummoottil Jacob
  • Patent number: 10739517
    Abstract: Systems for holding optical fibers in a predefined orientation and cleaving the optical fibers are shown. In one embodiment, the system comprises a substrate structure with a groove along the top surface of the substrate. The groove extends from the substrate front edge in a direction that is parallel to the orientation of an optical fiber and is dimensioned to receive a portion of a bare optical fiber. The substrate structure also comprises a transverse structure on the top surface, which crosses the groove at an angle. The transverse structure receives ultraviolet light (UV) curable material, which secures the end of the bare optical fiber within the groove. Securing the bare optical fiber allows for proper tension to be applied during cleaving.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 11, 2020
    Assignee: OFS FITEL, LLC
    Inventors: William R Holland, Robert Sienkowski
  • Patent number: 10739572
    Abstract: Methods, devices, and systems for elongating a beam path of a light beam, in particular of a laser beam, are provided. An example method includes coupling the light beam into an interspace between a plurality of first reflective surfaces and a plurality of second reflective surfaces facing the first reflective surfaces, multiply reflecting the light beam between the first reflective surfaces and the second reflective surfaces to elongate the beam path of the light beam, and coupling out the light beam from the interspace. The light beam undergoes the steps of coupling in, repeated reflecting and coupling out at least a first time with a first pass and a second time with a second pass, and the light beam traverses a different beam path in the interspace during the first pass in comparison with during the second pass.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: August 11, 2020
    Assignee: TRUMPF Lasersystems for Semiconductor Manufacturing GmbH
    Inventor: Joachim Schulz
  • Patent number: 10725245
    Abstract: A multi-port aggregated cable includes: a plurality of duplex optical fibers, each duplex optical fiber having a first end and a second end; a first optical interface attached to each of the duplex optical fibers at the first end thereof and defining multiple ports, one for each of the duplex optical fibers, the first optical interface aggregating the duplex optical fibers at the first end thereof; and a second optical interface attached to each of the duplex optical fibers at the second end thereof and defining multiple ports, one for each of the duplex optical fibers, the second optical interface aggregating the duplex optical fibers at the second end thereof.
    Type: Grant
    Filed: December 16, 2018
    Date of Patent: July 28, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Nicolas G. McDonald
  • Patent number: 10725249
    Abstract: A guide pin for aligning fiber optic ferrules includes an elongated cylindrical element with a proximal end, a distal end, a longitudinal axis therethrough, and a diameter. The distal end has a configuration to be insertable into a first ferrule to align the fiber optic ferrules. The proximal end is configured to be inserted into and retained in a guide pin opening in a second ferrule, the guide pin opening in the second ferrule having a diameter, the proximal end of the elongated cylindrical element having a first portion having a profile that is related to an arc with radius equal to or smaller than the diameter of the guide pin opening and a second portion having a profile defined by a line associated with the arc, the second portion being proximal relative to the first portion.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: July 28, 2020
    Assignee: US Conec, Ltd.
    Inventors: Jason Higley, Jillcha F. Wakjira, Darrell R. Childers