Patents Examined by Roland Dinga
  • Patent number: 10556115
    Abstract: A feedthrough for a cochlear implant or other medical device can include contacts disposed on an outer perimeter thereof. By disposing the contacts on the perimeter, the number of contacts on the feedthrough can be increased, the size of the feedthrough reduced, or both.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: February 11, 2020
    Assignee: COCHLEAR LIMITED
    Inventor: Mark Alan von Huben
  • Patent number: 10560791
    Abstract: Wires and coils within an electrode assembly electromagnetically interact and cause mechanical motion of the assembly. This mechanical motion can be used to supplement or replace the electrical stimulation provided by a standard cochlear implant and provides targeted acoustic stimulation to the cochlea.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: February 11, 2020
    Assignee: COCHLEAR LIMITED
    Inventors: Jan Vermeiren, Kristof Buytaert, Rishubh Verma
  • Patent number: 10556111
    Abstract: An implantable assembly is described for acquisition of neuronal electrical signals at a selected location which propagate along at least one nerve fiber contained in a nerve fiber bundle, as well as for selective electrical stimulation of the at least one nerve fiber, having: an implantable electrode assembly (E) which is disposed on a biocompatible support substrate which can be positioned around the nerve fiber bundle in a cuff, which has a cylindrical support substrate surface (i) which in the implanted condition is orientated facing the nerve fiber bundle, on which a first electrode assembly for locationally selective acquisition of the neuronal electrical signals and selective electrical stimulation of the at least one nerve fiber, and on which a second electrode assembly is disposed to record an ECG signal, and an analysis and control unit (A/S) which can be electrically conductively connected or is connected to the implantable electrode assembly (E), in which the locationally selective acquired neuron
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: February 11, 2020
    Assignee: Neuroloop GmbH
    Inventors: Dennis Plachta, Mortimer Giehrtmuehlen, Thomas Stieglitz, Josef Zentner
  • Patent number: 10549106
    Abstract: Systems and methods for auditing an operation of an ambulatory medical device (AMD) are described. A system may include an auditor device and an analyzer circuit communicatively coupled to each other. The auditor device can sense from the patient, independently of and during the operation of the AMD, information about the operation of the AMD including sensed electrostimulation and a physiological signal in response to the electrostimulation. The analyzer unit may generate a device audit indicator indicating the functionality and performance of the AMD using the sensed physiological signal and the sensed AMD operation information. The system may output the device audit indicator to a user or a process, or to program device therapy for the AMD based on the device audit indicator.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: February 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Pramodsingh Hirasingh Thakur, Stephen B. Ruble
  • Patent number: 10543360
    Abstract: A lead fixation accessory configured to be positioned over a skull hole and to transition between an opened state and a closed state during a lead implant procedure protects against lead migration by providing a mechanism for securing the lead in place at the skull hole while a stylet is removed from the lead. The lead fixation accessory remains in place after the implant procedure to provide chronic lead stability. A lead stabilization tool configured to access and grip a lead through a slotted cannula during the lead implant procedure also protects against lead migration by providing a mechanism for securing the lead in place at a point where the lead exits the skull hole while the slotted cannula is removed from the skull hole and peeled away from the lead.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 28, 2020
    Assignee: NeuroPace, Inc.
    Inventors: Emily A. Mirro, Jacob A. Mandell, David A. Greene
  • Patent number: 10543365
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: January 28, 2020
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Eyal Lasko, Shmuel Springer, Mark Rubin, Amit Dar
  • Patent number: 10537748
    Abstract: A medical device for multiple treatment therapies includes a hollow tube (102) having a first end portion with an electrode (104) disposed at the first end portion and an insulator (108) configured over a length of the tube such that conductive materials of the tube, except for the electrode, are electrically isolated from an exterior surface the tube. A conductive connection (127) is configured to electrically couple to the electrode to provide a voltage thereto. A selectively closeable valve (106) is configured to dispense a medical fluid from the tube.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: January 21, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Sascha Krueger, Steffen Weiss, Falk Uhlemann
  • Patent number: 10532205
    Abstract: A lead fixation accessory configured to be positioned over a skull hole and to transition between an opened state and a closed state during a lead implant procedure protects against lead migration by providing a mechanism for securing the lead in place at the skull hole while a stylet is removed from the lead. The lead fixation accessory remains in place after the implant procedure to provide chronic lead stability. A lead stabilization tool configured to access and grip a lead through a slotted cannula during the lead implant procedure also protects against lead migration by providing a mechanism for securing the lead in place at a point where the lead exits the skull hole while the slotted cannula is removed from the skull hole and peeled away from the lead.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 14, 2020
    Assignee: NeuroPace, Inc.
    Inventors: Jacob A. Mandell, Emily A. Mirro
  • Patent number: 10532215
    Abstract: Leadless, implantable microstimulators for treating chronic inflammation. These devices can include a static magnetic field detector (e.g., non-Hall effect sensors/detectors, including those based on a Wiegand effect or generating pulses at a predetermined frequency range and using a detection circuit to determine the decay rate of the pulses), to trigger an emergency shut off of the microstimulator. Also described are methods and apparatuses for regulating the temperature of an implant based applied power from a charger (e.g., voltage across the charger when unloaded and when loaded by the implant) to yield a power control loop correlated with the power drawn by the implant to determine temperature of the implant. A negotiation protocol can exchange data between the charger and the implant (e.g., type of charger, type of implant, nature of the coupling between the two, etc.) to set target power control loop parameters to estimate and regulate implant temperature.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: January 14, 2020
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon
  • Patent number: 10525259
    Abstract: A vestibular electrode is described that is for implantation into a vestibular semi-circular canal. An intra-labyrinthine electrode carrier with a C-shaped cross-section has an inner concave surface and an outer convex surface, and is configured to fit through an electrode opening in an outer surface of the bony labyrinth into the perilymph fluid without breaking the membranous labyrinth so as to fit the inner concave surface of the electrode carrier adjacent to the membranous labyrinth and the outer convex surface adjacent to the bony labyrinth. There are one or more electrode contacts on a surface of the electrode carrier that are configured for electrical interaction with adjacent neural tissue.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: January 7, 2020
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Andreas Marx, Angelo De Marzo, Rami Saba
  • Patent number: 10518089
    Abstract: A method of providing therapy to a patient using a plurality of electrodes is provided. The electrodes are located adjacent a target neural tissue region having a first nerve fiber of a relatively small diameter and a second nerve fiber of a relatively large diameter. The method comprises sourcing electrical current from a local anode into the target neural tissue region. The method further comprises therapeutically sinking a first portion of the electrical current from the target neural tissue region into a local cathode. The method further comprises sinking a second portion of the electrical current into a cathode remote from the target neural tissue region. The ratio of the sourced electrical current over the first sunk electrical current portion has a value that allows the first nerve fiber to be recruited by the electrical current while preventing the second nerve fiber from being recruited by the electrical current.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Kerry Bradley, David K. L. Peterson
  • Patent number: 10512772
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 24, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Patent number: 10507327
    Abstract: Methods are disclosed for treating a subject having a disease or disorder comprising stimulating a nerve of the subject with a corrective stimulus pattern derived from a disease-specific, condition-specific, endogenous mediator-specific or pharmacologic agent-specific neurogram in an amount and manner effective to treat the disease or disorder.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: December 17, 2019
    Assignee: The Feinstein Institutes for Medical Research
    Inventors: Kevin J. Tracey, Sangeeta S. Chavan
  • Patent number: 10485470
    Abstract: Methods, systems and devices for detecting and treating cognitive impairment conditions by inducing stimulation to a predetermined region of the brain and measuring neural activity response to the stimulation and evaluating a neuroplasticity of neural-structures in a predetermined brain region, then stimulating the predetermined brain region to treat the cognitive impairment condition.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: November 26, 2019
    Assignee: QUANTALX NEUROSCIENCE LTD
    Inventors: Iftach Dolev, Hilla Fogel
  • Patent number: 10478541
    Abstract: A centrifugal pump includes a rotating shaft, a pump substrate, a housing and an impeller. The pump substrate has a driving unit configured to rotate the rotating shaft. The housing has an inlet and an outlet and forms a pump chamber with the pump substrate. A body fluid sucked from the inlet flows through the pump chamber. The impeller is housed in the pump chamber and is configured to use the rotating shaft as an axis. The pump substrate has a magnetism generating source. The rotating shaft protrudes into the pump chamber from the pump substrate, and is pivotally supported on the pump substrate. A magnetic fluid is disposed on at least one of spaces formed among the pump substrate, the rotating shaft, and the impeller.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: November 19, 2019
    Assignee: HI-LEX CORPORATION
    Inventor: Makoto Teraura
  • Patent number: 10471264
    Abstract: Techniques for detecting a value of a sensed patient parameter, and automatically delivering therapy to a patient according to therapy information previously associated with the detected value, are described. In exemplary embodiments, a medical device receives a therapy adjustment from the patient. In response to the adjustment, the medical device associates a sensed value of a patient parameter with therapy information determined based on the adjustment. Whenever the parameter value is subsequently detected, the medical device delivers therapy according to the associated therapy information. In this manner, the medical device may “learn” to automatically adjust therapy in the manner desired by the patient as the sensed parameter of the patient changes. Exemplary patient parameters that may be sensed for performance of the described techniques include posture, activity, heart rate, electromyography (EMG), an electroencephalogram (EEG), an electrocardiogram (ECG), temperature, respiration rate, and pH.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Duane Bourget, Keith A. Miesel
  • Patent number: 10464836
    Abstract: A glass wafer has an internal surface and an opposing external surface separated by a wafer thickness. A hermetic, electrically conductive feedthrough extends through the wafer from the internal surface to the opposing external surface. The feedthrough includes a feedthrough member having an inner face exposed along the internal surface for electrically coupling to an electrical circuit. The feedthrough member extends from the inner face partially through the wafer thickness to an exteriorly-facing outer face hermetically embedded within the wafer.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: November 5, 2019
    Assignee: Medtronic, Inc.
    Inventors: David A. Ruben, Michael S. Sandlin
  • Patent number: 10456590
    Abstract: Improved, efficient devices/methods for medical and cosmetic applications, involving the delivery of laser energy to tissue are provided. In a preferred embodiment a portable, easy-to-use laser system comprises at least one laser source operating at one or more laser wavelengths; an electronic visual display having a n-dimensional input interface to set/select laser parameters; and at least one waveguide optically coupled to the laser source to convey laser radiation to a treatment site. The n-dimensional input interface inputs/selects lasing parameters which allows the selection of a combination of output wavelengths and powers by simply touching the electronic visual display. Method of use comprises the steps of placing at least one waveguide at preselected treatment site; selecting a combination of laser wavelengths and power by interacting with an electronic visual display; and irradiating the treatment site.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: October 29, 2019
    Assignee: Biolitec Unternehmensbeteiligungs II AG
    Inventor: Wolfgang Neuberger
  • Patent number: 10434234
    Abstract: The present disclosure provides for a method, control device, and implantable system, for acquiring a plurality of flow rate data points over time, each data point indicative of a flow rate of blood through the pump, calculating, based on the plurality of acquired flow rate data points, a value characterizing one or more features of a waveform formed from the plurality of flow rate data points; and determining, based on the value, the presence or absence of a suction condition in the pump.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 8, 2019
    Assignee: HeartWare, Inc.
    Inventors: Michael C. Brown, Neil Voskoboynikov
  • Patent number: 10426963
    Abstract: This document presents a system for managing treatment for an emergency cardiac event. The system includes memory, one or more electronic ports for receiving ECG signals, and a treatment module executable on one or more processing devices. The module is configured to perform a number of transformation on portions of an ECG signal into frequency domain data, obtain one or more previous values derived from one or more time segments of the ECG, and determine, based on the frequency domain data a first value and a second value, determine a probability of therapeutic success. The module is further configured to cause one or more output devices to present an indication of the probability of therapeutic success.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 1, 2019
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Weilun Quan, Ulrich Herken, Christopher Luke Kaufman