Patents Examined by Roland Dinga
  • Patent number: 10258730
    Abstract: The present invention relates to a rotary blood pump with a double pivot contact bearing system with an operating range between about 50 mL/min and about 1500 mL/min, wherein the force on the upper bearing is less than 3 N during operating speeds up to 6000 rpm. The rotary blood pump is part of a blood pump system that includes blood conduit(s), a control system with optional sensors, and a power source.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 16, 2019
    Inventors: F. Nicholas Franano, Howard M. Loree, II, Geoff Tansley, Steve Woodard, Barrett Hutto
  • Patent number: 10258240
    Abstract: In an example, an apparatus includes an elongated assembly, at least a portion of which is sized, shaped, or otherwise configured to be inserted into a human body to measure a physiological parameter at an internal location within the body. The elongated assembly can include an elongated member. The elongated assembly can include an optical fiber pressure sensor, located at a distal portion of the elongated member. The elongated assembly can include a housing disposed about the optical fiber pressure sensor. The elongated assembly can include a guidewire tube, coupled to the housing, the guidewire tube defining a receptacle sized and shaped to accept a guidewire to permit the distal portion of the elongated member to slide along the guidewire during insertion of the elongated assembly into the human body.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 16, 2019
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke, David J. Spamer
  • Patent number: 10245363
    Abstract: Apparatus, systems, and methods in which a catheter-based pump is used are disclosed. The catheter-based pump is placed within the inferior vena cava of a patient. The catheter-based pump has a variable obstructor, such as a balloon or some other artificial obstruction, which is sized and dimensioned to compartmentalize the inferior vena cava into an upstream region and a downstream region of the inferior vena cava. The catheter-based pump is configured to pump blood from the upstream region to a fluid line that discharges blood to a discharge location in the downstream region. Thus, a suitable pressure gradient across the organ is provided, which can benefit organ function.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: April 2, 2019
    Inventor: Stanton J. Rowe
  • Patent number: 10244941
    Abstract: A surgical guide comprising a contact lens comprising a body on which is disposed a reticule, the reticule may be used to guide a surgeon operating on an eye on which the contact lens is located is disclosed. Also disclosed is a surgical method, the method comprising using a reticule on a contact lens to guide a surgical procedure performed on an eye to thereby perform the surgical method. The reticule may comprise one or more concentric circle or concentric shape and/or a set of lines. The reticule may also comprise one or more meridian and/or one or more parallel. The reticule may further comprise one or more net or grid.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: April 2, 2019
    Assignee: L & L SULLIVAN PTY LTD.
    Inventor: Laurence John Sullivan
  • Patent number: 10245360
    Abstract: In one embodiment, the present invention includes a connector ring assembly to attach a VAD to a heart. The assembly includes a clamp which can rotate completely about the annular wall in a first state and is fixed relative to the annular wall in a second state. The clamp transitions from the first state to the second state via an actuator. The actuator can be configured with an axis of rotation generally parallel to the opening of the annular wall, thereby allowing manipulation of the actuator through the same surgical accessway as that used to implant the connector ring assembly. At least one embodiment provides a connector flange separately from an annular wall to provide greater access to the connector flange during implantation. The annular wall and clamp are attached to the connector flange after the flange is fixed to the heart.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: April 2, 2019
    Assignee: HeartWare, Inc.
    Inventors: Lance Lynn Andrus, Andre Castillo
  • Patent number: 10238394
    Abstract: Some embodiments of a system or method for treating heart tissue can include a control system and catheter device operated in a manner to intermittently occlude a heart vessel for controlled periods of time that provide redistribution of blood flow. In particular embodiments, the system and methods may be configured to monitor at least one input signal detected at a coronary sinus and thereby execute a process for determining a satisfactory time period for the occlusion of the coronary sinus. In further embodiments, after the occlusion of the coronary sinus is released, the control system can be configured to select the duration of the release phase before the starting the next occlusion cycle.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: March 26, 2019
    Assignee: Miracor Medical SA
    Inventors: Werner Mohl, Gregor Neumayr, Alem Jusic
  • Patent number: 10213593
    Abstract: System, device and method for providing neuromuscular electrical stimulation (NMES) to muscles of foot. The device includes an electrical signal generator for producing a wave pattern of variable frequency, duration, intensity, ramp time and on-off cycle. The device further includes surface electrodes for being positioned over the foot muscles or around ankles and attached to the signal generator. The device includes a wearable device for positioning a first electrode adjacent a heel of the wearer's foot and a second electrode adjacent an arch of the foot. The signal generator is programmed to stimulate the foot muscles and nerves.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 26, 2019
    Assignee: StimMed LLC
    Inventors: Robert E. Kaplan, James J. Czyrny, Scott E. Friedman
  • Patent number: 10194814
    Abstract: Presented herein are substantially automated techniques that enable an electro-acoustic or other hearing prosthesis implanted in a recipient to use objective measurements to determine when the recipient is likely experiencing sound perception changes. Once one or more perception changes are detected, the hearing prosthesis may initiate one or more remedial actions to, for example, address the perception changes. As described further below, the one or more remedial actions may include adjustments to the recipient's operational map to reverse the one or more perception changes.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: February 5, 2019
    Assignee: Cochlear Limited
    Inventors: Stephen Fung, Alex von Brasch, Kieran Reed
  • Patent number: 10195448
    Abstract: Implantable medical devices include connector enclosure assemblies that utilize conductors that are electrically coupled to feedthrough pins and that extend into a can where electrical circuitry is housed. The conductors may be coupled to the feedthrough pins and to capacitor plates within a filter capacitor by an electrically conductive bonding material and as a single bonding event during manufacturing. The base plate of the connector enclosure assembly may also include a ground pin. Ground capacitor plates may be present at a ground aperture of the filter capacitor where the ground pin passes through so that the ground pin, a ground conductor, and the ground capacitor plate may be coupled. A protective cover may be provided for the connector enclosure assembly to enclose the conductors intended to extend into the can prior to the assembly being joined to the can. Conductors may be attached to a common tab that is subsequently removed.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: February 5, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Michael J. Baade, Rajesh V. Iyer
  • Patent number: 10195440
    Abstract: A system for use with a neurostimulator coupled to one or more electrodes implanted adjacent neural tissue of a patient. The system comprises a user input device configured for allowing a user to select different nerve fiber diameters and to select a set of stimulation parameters. The system further comprises processing circuitry configured estimating regions of activation within the neural tissue of the patient based on the selected nerve fiber diameters and the selected stimulation parameter set. The system further comprises a display device configured for displaying the estimated regions of tissue activation. The user input device may further be configured for allowing the user to select different tissue regions of therapy, in which case, the display device may display the different tissue region on a human body map, and different indicia associating the displayed tissue regions for therapy to displayed estimated regions of tissue activation.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: February 5, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Changfang Zhu
  • Patent number: 10172539
    Abstract: Quantitatively determining an amount of reperfusion in an artery after angioplasty and quantitatively assessing an effectiveness of thrombolysis by non-invasively sensing from outside the subject mechanical vibrations from a mechanical contraction of at least one ventricle to simultaneously measure (a) IVCT (time duration of an isovolumetric contraction portion of a systole phase) and (b) a peak endocardial acceleration (PEA) during the IVCT. PEA is measured before and after opening the artery (or before and after thrombolysis) and in some embodiments one calculates a myocardial contractility index (MCI) of the subject, for example MCI=PEA/IVCT. A determination unit compares the first and second PEA (or the first and second MCI), and then determines an amount of reperfusion based on the comparison. The amount of reperfusion is proportionate to a viable myocardium and, in the case of thrombolysis, the amount of reperfusion quantitatively assesses the effectiveness of thrombolysis.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 8, 2019
    Assignee: CORSENS MEDICAL LTD.
    Inventor: Alon Marmor
  • Patent number: 10173056
    Abstract: The present invention is directed to methods for improving male fertility inter alia by increasing sperm count in a male subject. The methods of the invention comprise applying a positive electrical current below sensation level to at least one site of a scrotum of a subject in need thereof.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: January 8, 2019
    Assignee: Tel Hashomer Medical Research Infrastructure and Service Ltd.
    Inventors: Gil Raviv, David Shashar, Yoram Shadmi, Itzchak Shvitlowsky, David Castel
  • Patent number: 10165981
    Abstract: A surgical navigation system is disclosed including a camera that is fixedly attached to a patient. The camera space merges with the patient space and thereby eliminates the need for a separate patient tracker. The surgical navigation system calculates the position of a surgical tool with a tracking device in view of the camera and shows on a display device the position of the surgical tool with respect to the patient superimposed and in correlation with a scan image of the patient.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: January 1, 2019
    Assignee: STRYKER EUROPEAN HOLDINGS I, LLC
    Inventor: Hans Schoepp
  • Patent number: 10159423
    Abstract: Embodiments of the present disclosure describe methods of adaptive arrhythmia detection comprising monitoring ECG signals of a patient via a patient medical device, detecting and capturing ECG segments based on a heart rate threshold and an initial sensitivity level associated with the heart rate threshold; and adjusting the sensitivity level based on previously captured ECG segments. Embodiments of the present disclosure further describe patient medical devices comprising one or more electrodes and sensing circuitry for monitoring ECG signals of a patient; and a processing module configured to receive the monitored ECG signal, wherein the processing module detects and captures ECG segments based on a plurality of heart rate thresholds and one or more sensitivity levels associated with each of the heart rate thresholds, and adjusts at least one of the one or more sensitivity levels associated with each of the heart rate thresholds.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: December 25, 2018
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Rodolphe Katra, Niranjan Chakravarthy
  • Patent number: 10159836
    Abstract: Example apparatus and methods plan and control neuro-modulation of a distributed multi-region network in a brain. A location for a deep brain stimulation (DBS) electrode that participates in activating a combination of white matter pathways associated with the network is selected. The location is selected based on a pre-implantation image of the brain and a probabilistic activation model of the network. An initial stimulation parameter for DBS to be applied through the DBS electrode is selected based on a post-implantation image of the brain and the probabilistic activation model of the network. A modified stimulation parameter for DBS being applied through the DBS electrode is selected based on the initial stimulation parameter, a local field potential measured in the distributed multi-region network in response to DBS applied using the initial stimulation parameter, the probabilistic activation model of the distributed multi-region network, and the post-implantation image of the brain.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: December 25, 2018
    Assignee: Case Western Reserve University
    Inventors: Cameron McIntyre, Patricio Riva-Posse, Ki Sueng Choi, Ashutosh Chaturvedi, Helen Mayberg, Michele Tagliati, Tyler Cheung
  • Patent number: 10149622
    Abstract: In a system and method of reconstructing cardiac activation information, pairs of cardiac signals obtained from a patient are accessed. The pairs have a first cardiac signal that is common among the pairs and second cardiac signals that are different among the pairs. The first cardiac signal and the second cardiac signals are processed to identify points of change in the first cardiac signal at which a derivative of the first cardiac signal diverges with respect to derivatives of the second cardiac signals. An activation onset time is assigned at a point in the first cardiac signal based on correspondence of the points of change to define a cardiac activation indicating a beat.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: December 11, 2018
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veteran's Affairs
    Inventors: Sanjiv Narayan, Carey Robert Briggs
  • Patent number: 10143395
    Abstract: A system and method for detecting arrhythmic electrocardiogram (ECG) signals includes defining a plurality of threshold heart rates and rate-dependent sensitivity levels for detecting arrhythmic ECG episodes, wherein more clinically relevant heart rates are assigned rate-dependent sensitivity levels with higher sensitivities. ECG signals are monitored by a medical device, and monitored ECG signals are processed using the plurality of threshold heart rates and rate-dependent sensitivity levels to detect and capture arrhythmic ECG segments.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: December 4, 2018
    Assignee: MEDTRONIC MONITORING, INC.
    Inventors: Niranjan Chakravarthy, Rodolphe Katra
  • Patent number: 10137230
    Abstract: The present invention provides a skin attachment device for use with implantable medical devices which extend through the skin for prolonged durations.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 27, 2018
    Assignee: NuPulseCV, Inc.
    Inventor: Brian Howard Novack
  • Patent number: 10141076
    Abstract: The present disclosure involves a medical system that includes one or more implantable medical devices configured to deliver a medical therapy to a patient. The medical system also includes a portable electronic device on which a touch-sensitive user interface is implemented. The user interface is configured to provide a visual representation of the medical therapy through a hierarchy. The hierarchy includes a lower level representation of the medical therapy that corresponds to a stimulation program that includes a plurality of configurable stimulation parameters. The hierarchy includes a middle level representation of the medical therapy that corresponds to a stimulation program-set that includes a plurality of different stimulation programs. The hierarchy includes an upper level representation of the medical therapy that corresponds to a scrollable collection of stimulation program-sets that are represented by a plurality of digital cards, respectively.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: November 27, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 10130757
    Abstract: A medical therapy system including liquid detection is disclosed. A medical therapy includes a case with an interior and an exterior. Within the interior of the case is the liquid detection system that includes a first electrode set with a first positive electrode and a first negative electrode. The liquid detection system further includes an impedance measurement circuit coupled to the first electrode set to determine impedance values between the first positive electrode and the first negative electrode. A threshold detector compares impedance values between the first electrode set to a first threshold impedance. A microprocessor is programmed to initiate an alarm when measured impedance from the first electrode set is below the first threshold impedance.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: November 20, 2018
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Yongbo Wang, Steve Chow