Patents Examined by Roland Dinga
  • Patent number: 10933242
    Abstract: Techniques for therapy delivery are described. A processing circuit may adjust a first therapy parameter from a first level to a second level, and responsive to the adjustment of the first therapy parameter, compare a level of an evoked compound action potential (ECAP) generated from therapy delivery based on the adjusted first therapy parameter to an ECAP threshold. The processing circuit may adjust a second therapy parameter from a third level to a fourth level based on the comparison. The second therapy parameter is different than the first therapy parameter. The processing circuit may cause therapy delivery with the first therapy parameter at the second level and the second therapy parameter at the fourth level.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 2, 2021
    Assignee: Medtronic, Inc.
    Inventor: Nathan A. Torgerson
  • Patent number: 10918522
    Abstract: In a general aspect, a vitrectomy system is adapted to use photodisruption to rupture eye tissue. In some aspects, a photodisruption-based vitrectomy system includes a laser source configured to generate optical pulses having a pulse energy greater than a threshold energy for causing photodisruption in vitreous humor. The system also includes an optical switching device arranged to receive an output of the laser source, and an optical fiber with multiple cores that is arranged to receive an output of the optical switching device. The optical switching device is configured to select a core of the optical fiber and direct optical pulses received from the laser source into the selected core.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: February 16, 2021
    Assignee: Alcon Inc.
    Inventors: Gerald David Bacher, Brian William McDonell, Michael J. Papac
  • Patent number: 10912570
    Abstract: Some embodiments of a system or method for treating heart tissue can include a control system and catheter device operated in a manner to intermittently occlude a heart vessel for controlled periods of time that provide redistribution of blood flow. In particular embodiments, the system and methods may be configured to monitor at least one input signal detected at a coronary sinus and thereby execute a process for determining a satisfactory time period for the occlusion of the coronary sinus. In further embodiments, after the occlusion of the coronary sinus is released, the control system can be configured to select the duration of the release phase before the starting the next occlusion cycle.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: February 9, 2021
    Assignee: Miracor Medical SA
    Inventors: Werner Mohl, Gregor Neumayr, Alem Jusic
  • Patent number: 10912648
    Abstract: A low-profile intercranial device including a low-profile static cranial implant and a functional neurosurgical implant. The low-profile static cranial implant and the functional neurosurgical implant are virtually designed and interdigitated prior to physical assembly of the low-profile intercranial device.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: February 9, 2021
    Assignees: LONGEVITI NEURO SOLUTIONS LLC, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Chad R. Gordon, Jesse Christopher
  • Patent number: 10912464
    Abstract: The present disclosure generally relates to a system and method for non-invasively monitoring health of a vascular system of a patient. The system comprises a monitoring device for measuring vascular activity of the patient; and a server configured for performing steps of the method. The method steps comprise: receiving a set of signals comprising a vascular signal derived from vascular activity measurements of the patient by the monitoring device; reconstructing an identity pulse from the vascular signal; determining identity pulse features from the identity pulse; comparing data from a set of features with a patient database, the set of features comprising the identity pulse features; and generating a patient risk assessment of vascular health conditions based on results from the comparison with the patient database, wherein the patient database comprises data associated with the set of features for a population of patients.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: February 9, 2021
    Inventors: Mahawaththa Kodithuwakkuge Keerthi Priyankara, Wijesekara Vithanage Charith, Mundigala Arachchillage Isuru Suharshan Rajakaruna
  • Patent number: 10905883
    Abstract: Methods and systems for selecting electrical stimulation parameters for an electrical stimulation device implanted in a patient can use an iterative process for identifying electrodes for stimulation, as well as suitable stimulation parameters. The process begins with an initial set of electrode combinations to identify regions of the nerve or other tissue for stimulation. This leads to selection of other electrode combinations to test, followed by the selection of multiple electrode groups (which can include three or more electrodes) for stimulation.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: February 2, 2021
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Bryan Allen Clark, William Conrad Stoffregen, Michael X. Govea, Craig M. Stolen, David J. Ternes, David Blum, Pramodsingh Hirasingh Thakur, Stephen B. Ruble
  • Patent number: 10905343
    Abstract: Presented herein are substantially automated techniques that enable an electro-acoustic or other hearing prosthesis implanted in a recipient to use objective measurements to determine when the recipient is likely experiencing sound perception changes. Once one or more perception changes are detected, the hearing prosthesis may initiate one or more remedial actions to, for example, address the perception changes. As described further below, the one or more remedial actions may include adjustments to the recipient's operational map to reverse the one or more perception changes.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: February 2, 2021
    Assignee: COCHLEAR LIMITED
    Inventors: Stephen Fung, Alex von Brasch, Kieran Reed
  • Patent number: 10881308
    Abstract: The present invention discloses neuro-stimulation systems and methods for affecting cardiovascular function, particularly for improving heart rate variability and treating arrhythmia.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: January 5, 2021
    Assignee: ZIV HEALTHCARE LTD.
    Inventor: Amos Ziv
  • Patent number: 10881855
    Abstract: Approaches are described for fitting an implanted cochlear implant having electrode array contacts to an implanted patient. For multiple different fitting methods, each fitting method is assigned one or more electrode contacts wherein no electrode contact is assigned more than one fitting method. For each fitting method, the assigned electrode contacts are fitted according to the fitting method and fitting values for non-assigned electrode contacts are interpolated. Then a fitting is performed for each electrode contact in the electrode array based on a weighted averaging of the fittings for the various different fitting methods.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 5, 2021
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventor: Marek Polak
  • Patent number: 10874846
    Abstract: The present disclosure provides a TENS electrode needle and a TENS device. The TENS electrode needle includes: a needle handle having a first electrode and a second electrode for providing pulse current signals with different polarities are arranged; and at least one first needle body and at least one second needle body. Each of the first needle body and the second needle body includes a first end and a second end. The first end of the first needle body is electrically connected to the first electrode, and the first end of the second needle body is electrically connected to the second electrode, so as to form an electrical field between the second end of the first needle body and the second end of the second needle body.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: December 29, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Yangkun Jing
  • Patent number: 10869597
    Abstract: Methods, apparatus, and systems are provided for scanning and measuring an anatomical cavity. An apparatus may include an absorbing medium assembly that is fluidly connected to an earpiece and configured to provide an absorbing medium to the earpiece. The absorbing medium assembly may include a medium container with a gas trap, as well as a tube fluidly connected to the medium container. The gas trap may be located at a top portion of the medium container. The tube may be coupled to the top portion or a bottom portion of the medium container. The system may include a dip tube disposed inside the medium container when the tube of the absorbing medium assembly couples to a top portion of the medium container. A gas relief valve configured to enable gas to escape may also be present in the apparatus.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: December 22, 2020
    Assignee: LANTOS TECHNOLOGIES, INC.
    Inventors: Shawn M. Patterson, Steve Schmidt, Mac Andrew Dougan, Brian Connolly, Manas Menon, Lynn Ihlenfeldt
  • Patent number: 10870003
    Abstract: A prosthetic hearing implant kit is disclosed. The prosthetic hearing implant kit comprises internal components configured to be implanted in a recipient and comprises an internal coil; external components configured to be worn by the recipient and comprises an external coil adapted to be inductively coupled with said internal coil; and an alert system having a second external coil and adapted to receive an external alarm and to transmit signals to said implanted components via said external coil for providing the recipient with a corresponding alarm indication.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 22, 2020
    Assignee: Cochlear Limited
    Inventors: Brian Gordon, Charles Roger Aaron Leigh, Tadeusz Jurkiewicz, Kiangkai Tankongchumruskul
  • Patent number: 10850093
    Abstract: A system for lead integrity monitoring includes an implantable medical device (IMD) having a housing enclosing a control circuit; and a lead, having a first sensor. The lead is coupled to the housing and electrically coupled to the control circuit. The system also includes at least one processing device configured to identify a first lead failure alert based on a first set of information; obtain a second set of information generated by a second sensor; perform an evaluation of the first set of information in the context of the second set of information; and confirm or cancel the first lead failure alert based on the evaluation.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: December 1, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, Deepa Mahajan, Qi An, Keith R. Maile, David J. Ternes, Zhe Shen
  • Patent number: 10842992
    Abstract: An active cardiac electrical lead is disclosed, including a tip housing having a lumen, a soft tip plug and a marker band. The tip housing includes a body and an extension extending from a distal end of the body, and the body is of greater outer diameter than the extension. The soft tip plug fits over the extension and engaging the extension. The marker band is attached to an outer surface of the body or to an inner surface of the lumen.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 24, 2020
    Assignee: MICROPORT SOARING CRM (SHANGHAI) CO., LTD.
    Inventors: Grace Jang, Zhijun Cheng, Jiangkai Sun
  • Patent number: 10821287
    Abstract: Described here are bioelectric modulation systems and methods for generating rotating or spatially-selective electromagnetic fields. A modulation system includes a multichannel electrode with independently controllable electrode channels that can be operated to generate rotating electromagnetic fields that stimulate cells regardless of their orientation, or to generate spatially-selective electromagnetic fields that preferentially stimulate cells oriented along a particular direction. The bioelectric modulation system may be implemented for stimulation of neurons or other electrically active cells. The bioelectric modulation described here may be used for a variety applications including deep brain stimulation (DBS), spinal cord and vagus nerve stimulation, stimulation of myocardial (heart) tissue, and directional stimulation of muscles.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: November 3, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Shalom Michaeli, Silvia Mangia, Olli Grohn, Artem Shatillo, Lauri Lehto, Matthew Johnson, Simeng Zhang, Julia Slopsema
  • Patent number: 10786167
    Abstract: The exemplary systems and methods may be configured for use in the determination of ectopic beat-compensated electrical heterogeneity information. Electrical activity can be monitored by a plurality of external electrodes. Ectopic beat information can be detected. Ectopic beat-compensated electrical heterogeneity information can be generated based on the monitored electrical activity and the detected ectopic beat information.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 29, 2020
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 10765377
    Abstract: A heartbeat-signal detecting device, which is for detecting a heartbeat signal of a living body, includes: (a) a gas-flow sensor configured to detect a flow rate of exhalation and inhalation passing through a trachea of the living body; (b) a gas-flow calculation controlling portion configured to output a respiration signal that reflects a respiratory motion of the living body, based on a signal outputted from the gas-flow sensor; (c) a waveform analysis controlling portion configured to extract, from the respiration signal, frequency components which are in synchronization with a pulse of a heart of the living body superimposed on the respiration signal, and to output a heartbeat signal representing a heartbeat waveform of the living body; and (d) a heartbeat-signal evaluation controlling portion is configured to evaluate a functional abnormality or an anatomic abnormality of the heart, based on the heartbeat signal analyzed by the waveform analysis controlling portion.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: September 8, 2020
    Assignee: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM
    Inventors: Tsutomu Kawabe, Mitsuhiro Shikida, Miyoko Matsushima
  • Patent number: 10758723
    Abstract: A durable nerve cuff electrode for achieving block of an action potential in a large diameter nerve.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: September 1, 2020
    Assignee: Neuros Medical, Inc.
    Inventors: Zi-Ping Fang, Nemath Syed Shah
  • Patent number: 10750968
    Abstract: Current technologies analyze electrocardiogram (ECG) signals for a long duration, which is not always a practical scenario. Moreover the current scenarios perform a binary classification between normal and Atrial Fibrillation (AF) only, whereas there are many abnormal rhythms apart from AF. Conventional systems/methods have their own limitations and may tend to misclassify ECG signals, thereby resulting in an unbalanced multi-label classification problem.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 25, 2020
    Assignee: Tata Consultancy Services Limited
    Inventors: Shreyasi Datta, Chetanya Puri, Ayan Mukherjee, Rohan Banerjee, Anirban Dutta Choudhury, Arijit Ukil, Soma Bandyopadhyay, Arpan Pal, Sundeep Khandelwal, Rituraj Singh
  • Patent number: 10750966
    Abstract: A system including a medical device is provided. The medical device includes at least one sensor configured to acquire first data descriptive of a patient, first memory storing a plurality of templates, and at least one processor coupled to the at least one sensor and the first memory. The at least one processor is configured to identify a first template of the plurality of templates that is similar to the first data, to determine first difference data based on the first template and the first data, and to store the first difference data in association with the first template. The system may further include the programmable device.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 25, 2020
    Assignee: ZOLL Medical Corporation
    Inventors: Steven J. Szymkiewicz, Francesco Nicolo, Gary A. Freeman, Timothy F. Stever, Shane S. Volpe