Patents Examined by Samuel P. Siefke
  • Patent number: 11796449
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: October 24, 2023
    Assignee: ABS Global, Inc.
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Patent number: 11788961
    Abstract: The present invention is to provide a method capable of visualizing a coating state of a protein adsorbent even on a substrate having a complicated structure, in particular, for use on a surface of an apparatus for culturing or growing living cells. The method comprises coating a series of substrates with selected protein adsorbents and fluorescent dye, irradiating selected coated substrates and determining a coating state from color development of the substrates.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: October 17, 2023
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Zhe Xu, Takao Anzai
  • Patent number: 11781993
    Abstract: Embodiments of the present disclosure provide for methods of detecting, sensors (e.g., chromogenic sensor), kits, compositions, and the like that related to or use tunable macroporous polymer. In an aspect, tunable macroporous materials as described herein can be used to determine the presence of a certain type(s) and quantity of liquid in a liquid mixture.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: October 10, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Sin Yen Leo, Peng Jiang, Tianwei Xie
  • Patent number: 11779920
    Abstract: The present invention relates to a microfluidic particle analysis device comprising an inlet and an outlet in fluid communication via a main channel defining a main flow direction from an inlet end to an outlet end, the main channel being defined by a main channel wall extending from the inlet end to the outlet end and having a first cross-sectional dimension in the range of 20 ?m to 120 ?m and a second cross-sectional dimension of at least 100 ?m, the main channel wall at a vertex having an opening extending along the main flow direction and being open to an analysis section having surfaces at an analytical distance in the range of 5 ?m to 50 ?m and a sensor system for detecting a particle. The present invention also relates to a method of using the microfluidic particle analysis device for detecting particles or monitoring the concentration of particles.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: October 10, 2023
    Assignee: SBT INSTRUMENTS A/S
    Inventors: Gustav Erik Skands, Christian Vinther Bertelsen, Frederik Peter Aalund
  • Patent number: 11779930
    Abstract: A container (1) for storing a bodily fluid, for example a blood collection tube (2), comprising: an interior space (4) configured to store the bodily fluid; and a wall (5) enveloping the interior space, wherein a surface of the wall (5) facing the interior space (4) of the container (1) forms a contact surface (6), wherein at least a portion of the contact surface (6) is provided with a primer coating (7), wherein the primer coating (7) is formed from a perfluorophenyl azide (PFPA) including an azide group (9) and a functional group (10), and wherein a co polymer made from poly (N-vinylamine-co-N-vinyl acetamide) is bonded to the functional group (10) of the primer coating (7). The invention also relates to a method for coating a contact surface (6) of a container (1) for storing a bodily fluid.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: October 10, 2023
    Assignee: DC DIAGNOSTICS CONCEPT UG (HAFTUNGSBESCHRANKT)
    Inventor: Nagle Yagmur
  • Patent number: 11779919
    Abstract: A microfluidic system includes a microfluidic cartridge and a detector assembly. The microfluidic cartridge includes a first and second side and at least one flow channel and an inlet to flow channel(s) for feeding a liquid sample, the flow channel(s) includes a plurality of first optical detection sites. The detector assembly includes a slot. The detector assembly and the microfluidic cartridge are constructed such that when the microfluidic cartridge is inserted to a first predetermined position into the slot, one of the first optical detection sites of the microfluidic cartridge is positioned in the beam path of the first light source, and when the cartridge is inserted to a second predetermined position into the slot, another one of the first optical detection sites of the microfluidic cartridge is positioned in the beam path of the first light source.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: October 10, 2023
    Assignee: ZOETIS DENMARK APS
    Inventors: Niels Kristian Bau-Madsen, Lars Bue Nielsen, Martin Heller, Ole Kring, Olga Ordeig, Bent Overby
  • Patent number: 11761974
    Abstract: A cell and medicament dispensing device for drug screening is configured to dispense minute amount of cells and medicaments. The device has a base, a transfer plate serving mechanism, a transfer plate positioning mechanism, an injection mechanism, a cell culture plate positioning mechanism, and a dispensing mechanism. The transfer plate serving mechanism moves a transfer plate to the transfer plate positioning mechanism. The injection mechanism injects cells and medicaments into recesses in the transfer plate. A cell culture plate is fixed in the cell culture plate positioning mechanism. The dispensing mechanism moves back and forth between a position above the transfer plate and a position above the cell culture plate to dispense the cells or medicaments from the transfer plate to the cell culture plate. As a result, the process of drug screening is automated to reduce labor and improve quality significantly.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: September 19, 2023
    Assignee: DrSignal BioTechnology Co., Ltd.
    Inventors: Hsin Wu Mi, Hsin Fei Huang
  • Patent number: 11761873
    Abstract: Methods may include emplacing a downhole tool within a wellbore, sampling a fluid downhole with the downhole tool; analyzing the fluid, and calculating an interfacial tension (IFT), wherein calculating the acid-base IFT contribution comprises measuring a concentration of a surface-active species directly. Apparatuses for measuring an interfacial tension (IFT) in a fluid downhole may be part of a downhole tool and may include a sampling head to sample the fluid; and a downhole fluid analysis module that includes a spectrometer capable of measuring a concentration of a surface-active species in the fluid, and a processor configured to determine the IFT of the fluid downhole based on the measured concentration of the surface-active species.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: September 19, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Simon Ivar Andersen, Wael Abdallah, Dominic Joseph Brady, Mohammed Badri, Sharath Chandra Mahavadi, Bastian Sauerer, Mohamed Ahmed Abdel Reheem Hamdy
  • Patent number: 11747267
    Abstract: A sensor system includes a sensing element having a section of a layer assembly deposited onto a substrate. The layer assembly includes plural layers of different materials. The section of the layer assembly is configured to be etched to form plural individual pillars of the plural layers of the different materials. The individual pillars are configured to be in contact with a fluid to sense one or more analyte fluid components within the fluid. The sensing element is configured to generate a sensor signal responsive to the individual pillars being in contact with the fluid. The sensor system includes one or more processors configured to receive the sensor signal from the sensing element. The one or more processors may identify the one or more analyte fluid components within the fluid and an amount of each of the analyte fluid components within the fluid based on the sensor signal.
    Type: Grant
    Filed: March 22, 2020
    Date of Patent: September 5, 2023
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Joleyn Eileen Brewer
  • Patent number: 11747332
    Abstract: A microarray assembly for detection of a target molecule is disclosed. The microarray assemblies comprise an array chamber having a microarray located therein and features that facilitate liquid movement within the array chamber. Also disclosed are methods for making the microarray assembly using rollable films and methods for detecting microarray spots using an internal control fluorophore in the array spot.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: September 5, 2023
    Assignee: AKONNI BIOSYSTEMS, INC.
    Inventors: Christopher G. Cooney, Peter Qiang Qu, Alexander Perov, Jennifer Parker
  • Patent number: 11747324
    Abstract: Materials and manufacturing techniques to produce test strips in high volume at low-cost for the measurement of gas in various industries and environments are disclosed. The test strip is generally comprised of a substrate, at least one electrical connection, at least one sensing chemistry and at least one additional layer. The test strip may provide a quantitative author a qualitative read out. A method for collecting and analyzing data to monitor and manage patients with chronic respiratory disease is disclosed. Implementations include software applications, connected medical devices, web servers and electronic catalogs. A method for identifying treatment trends from a population combining medical, biological and environmental data is disclosed. A method for proactively alerting and patients, caregivers and medical providers to trends in health by using the implementations of the invention are disclosed.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: September 5, 2023
    Assignee: Biometry Inc.
    Inventors: Thomas T. Morgan, Bryan Nolan, David L. Carnahan
  • Patent number: 11731124
    Abstract: The present invention is directed to sample test cards having an increased sample well capacity for analyzing biological or other test samples. In one embodiment, the sample test cards of the present invention comprise one or more fluid over-flow reservoirs, wherein the over-flow reservoirs are operatively connected to a distribution channel by a fluid over-flow channel. In another embodiment, the sample test cards may comprise a plurality of flow reservoirs operable to trap air thereby reducing and/or preventing well-to-well contamination. The test card of this invention may comprise from 80 to 140 individual sample wells, for example, in a test card sample test cards of the present invention have a generally rectangular shape sample test card having dimensions of from about 90 to about 95 mm in width, from about 55 to about 60 mm in height and from about 4 to about 5 mm in thickness.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: August 22, 2023
    Assignee: BIOMERIEUX, INC.
    Inventors: Bruno Colin, Raymond O'Bear, Cecile Paris
  • Patent number: 11732298
    Abstract: Provided are methods for biological sample processing and analysis. A method can comprise providing a substrate configured to rotate. The substrate can comprise an array having immobilized thereto a biological analyte. A solution comprising a plurality of probes may be directed, via centrifugal force, across the substrate during rotation of the substrate, to couple at least one of the plurality of probes with the biological analyte. A detector can be configured to detect a signal from the at least one probe coupled to the biological analyte, thereby analyzing the biological analyte.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 22, 2023
    Assignee: Ultima Genomics, Inc.
    Inventors: Gilad Almogy, Kristopher Barbee, Nathan Beckett
  • Patent number: 11733161
    Abstract: Disclosed herein is a method of determining a concentration of a subject based on fraction bound measurement. The method of determining a concentration of a subject based on fraction bound measurement may include fixing a ligand to a surface of an optical device, measuring a fraction bound of a subject to be detected based on an optical signal when the subject reacts to the ligand fixed to the surface of the optical device, and determining a relative value of a concentration of the subject based on a ratio of measured values of the fraction bounds of the subject and a reference signal.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 22, 2023
    Inventors: Hansuek Lee, Yeseul Kim
  • Patent number: 11725176
    Abstract: Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: August 15, 2023
    Assignees: Sanofi, Massachusetts Institute Of Technology
    Inventors: Shireen Goh, Rajeev Jagga Ram, Kevin Shao-Kwan Lee, Michelangelo Canzoneri, Horst Blum
  • Patent number: 11719688
    Abstract: Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device. In some embodiments, the blood coagulation testing system can operate as an automated thromboelastometry system that is particularly useful, for example, at a point-of-care site.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: August 8, 2023
    Assignee: C A Casyso GmbH
    Inventors: Cory Lee McCluskey, Robert S. Hillman, Michael Gorin, Hubert Martin Schwaiger
  • Patent number: 11717822
    Abstract: This system takes in raw cellular material collected using a provided swab, blood collection device, urine collection device, or other sample collection device and transforms that biological material into a digital result, identifying the presence, absence and/or quantity of nucleic acids, proteins, and/or other molecules of interest.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: August 8, 2023
    Assignee: CUE HEALTH INC.
    Inventors: Ayub Khattak, Clinton Sever
  • Patent number: 11717825
    Abstract: The valve is formed in a valve body housing a first path portion, a second path portion, and an coupling zone between the first and second path portions. A shutter is arranged in the coupling zone and has a shutting portion of ferromagnetic material that is deformable under the action of an external magnetic field between an undeformed position, wherein the shutter closes the coupling zone, and a deformed position, wherein the shutter at least partially frees the coupling zone. The shutting portion of the shutter is formed by a rubber membrane incorporating particles, for example of ferrite particles.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 8, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Davide Cucchi, Lorenzo Bruno, Francesco Ferrara
  • Patent number: 11701039
    Abstract: A point-of-care diagnostic system that includes a cartridge and a reader. The cartridge can contain a patient sample, such as a blood sample. The cartridge is inserted into the reader and the patient sample is analyzed. The reader contains various analysis systems, such as an electrophoresis detection system that uses electrophoresis testing to identify and quantify various components of the blood sample. The reader can process data from the various patient sample analysis to provide interpretative results indicative of a disorder, condition, disease and/or infection of the patient.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: July 18, 2023
    Assignee: HEMEX HEALTH, INC.
    Inventors: Peter Galen, Umut Gurkan, Arwa Fraiwan, Muhammad Noman Hasan, Daniel E. Grupp, Joshua King Hoyt, James Thorne, Brian T. Grimberg
  • Patent number: 11703494
    Abstract: A measuring apparatus for determining at least one measurand of a measuring medium includes a first measuring device including a first measuring sensor structured to contact the measuring medium and configured to detect measured values of the at least one measurand, the first measuring device embodied to determine a first measured value that is dependent on the at least one measurand of the measuring medium, a sampling device structured to remove a sample from the measuring medium, a second measuring device including a second measuring sensor and embodied to determine a second measured value that is dependent on the least one measurand of the sample, and an electronic control apparatus configured to receive and process the first and second measured value and to perform a verification, calibration and/or adjustment of the first measuring device using the second measured value.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: July 18, 2023
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Thomas Alber, Joachim Albert, Ralf Steuerwald, Michael Hanko, Angela Eubisch