Patents Examined by Sarah A Slifka
  • Patent number: 11552321
    Abstract: The present disclosure relates to the technical field of fuel cells, in particular to an anode recirculation system with an ejector for a solid oxide fuel cell. The heat exchanger is adopted in the anode recirculation system for the solid oxide fuel cell, the temperature of the fuel gas can be increased through heat exchange between the fuel gas as the primary flow medium and the cell exhaust as the secondary flow medium. The fuel at room temperature stored in the fuel tank is used as the cooling medium of the valve core needle to cool the valve core needle, so that it is ensured that a temperature of the stepping motor does not exceed a failure temperature.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: January 10, 2023
    Assignee: Tsinghua University
    Inventors: Yinhai Zhu, Peixue Jiang
  • Patent number: 11539072
    Abstract: A lithium-ion conducting composite material includes a Li binary salt, a Li-ion conductor with a chemical composition of Li2?3x+y?zFexOy(OH)1?yCl1?z, and at least two of: a first inorganic compound with a chemical composition of (Fe1?xM1x)O1?y(OH)yCl1?x; a second inorganic compound with a chemical composition of M2OX; and a defected doped inorganic compound with a chemical composition of (M3OX)?. The value of n is 1 or 2, x is greater than 0 and less than or equal to 0.25, and y is greater than or equal to 0 and less than or equal to 0.25. Also, M1 is at least one of Mg and Ca, M2 and M3 are each at least one of Fe, Al, Sc, La, and Y, and X is at least one of F, Cl, Br, and I.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: December 27, 2022
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Ota, Ryuta Sugiura, Timothy S. Arthur, Nikhilendra Singh
  • Patent number: 11539056
    Abstract: A fuel cell component including a fuel cell substrate and a nitride material. The material may be a nitride compound having a chemical formula AxByNz, where A is a metal, B is a metal different than A, N is nitrogen, x>0, y<7 and 0<z<12. The nitride compound may have a ratio of a stoichiometric factor to a reactivity factor of greater than 1.0. The stoichiometric factor indicates the reactivity of a nitride compound with chemical species as compared to a baseline nitride compound. The reactivity factor indicates the reaction enthalpy of the nitride compound and the chemical species as compared to a baseline nitride compound and the chemical species. The nitride compound may be Fe3Mo3N, Ni2Mo3N, Ni2W3N, CuNi3N, Fe3WN, Zn3Nb3N, V3Zn2N or a combination thereof. The nitride compound may be Si6Y3N11, Ni2Mo4N, Fe3Mo5N6 or a combination thereof.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 27, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Lei Cheng
  • Patent number: 11530136
    Abstract: The preparation method according to the present disclosure is to easily prepare hexagonal molybdenum oxide (h-MoO3) having a nanorod shape even in a low temperature precipitation reaction at atmospheric pressure without applying hydrothermal synthesis under high temperature and high pressure conditions. The hexagonal molybdenum oxide (h-MoO3) nanorods prepared therefrom can be properly mixed with carbon-based conductive materials such as carbon nanofiber, and thus can be usefully used as an anode material for a pseudocapacitor.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: December 20, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Dongjun Lee, Seokhyun Yoon, Byunggook Lyu
  • Patent number: 11522218
    Abstract: An ionic conductor includes an inorganic oxychloride compound with a chemical composition of (Fe1-xMx)O1-y(OH)yCl1-x where M is selected from at least one of Mg and Ca, and x is greater than 0 and less than or equal to 0.25, y is greater than or equal to 0 and less than or equal to 0.25. The inorganic oxychloride compound has a thermal decomposition start temperature of about 410° C. and x-ray diffraction peaks (2?) between about 20.79° and about 22.79°, between about 30.03° and about 32.03°, between about 39.47° and about 41.47°, and between about 76.44° and about 78.44°.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: December 6, 2022
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Ota, Ryuta Sugiura, Timothy S. Arthur, Nikhilendra Singh
  • Patent number: 11522196
    Abstract: The present invention relates to an anode active material, a nonaqueous lithium secondary battery comprising the same, and a preparation method therefor, and the purpose of the present invention is to improve high-rate charging characteristics without deterioration of charging and discharging efficiency and lifetime characteristics when applying an amorphous carbon coating layer as the anode active material of the nonaqueous lithium secondary battery, wherein the amorphous carbon coating layer comprising MoPx particles composed of MoP and MoP2 is formed on the surface of a carbon-based material, thereby reducing resistance when intercalating lithium ions into the surface of the carbon-based material, and improving reactivity and structural stability of the surface. The anode active material according to the present invention comprises a carbon-based material, and an amorphous carbon coating layer comprising MoPx particles composed of MoP and MoP2 formed on the surface of the carbon-based material.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: December 6, 2022
    Assignees: KOREA ELECTROTECHNOLOGY RESEARCH INSTITUTE, UNIVERSITY-INDUSTRY COOPERATION GROUP OF KYUNG HEE UNIVERSITY
    Inventors: Sang Min Lee, Min Sik Park, Gum Jae Park, Ha Young Lim, Jeong Hee Choi
  • Patent number: 11508971
    Abstract: There is provided a catalyst layer for a fuel cell that can inhibit reduction in water electrolysis function. The catalyst layer for a fuel cell according to this disclosure comprises carbon supports on which Pt particles are supported, and Ir oxide particles, wherein the ratio of the mean primary particle size of the Ir oxide particles with respect to the mean primary particle size of the Pt particles is 20 or greater. The mean primary particle size of the Pt particles may be 20.0 nm or smaller and the mean primary particle size of the Ir oxide particles may be 100.0 nm to 500.0 nm.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: November 22, 2022
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Noriyuki Kitao
  • Patent number: 11502309
    Abstract: The carrier metal catalyst achieves suppression of internal resistance of a fuel cell. A carrier metal catalyst includes: a carrier powder; and metal fine particles supported on the carrier powder; wherein: the carrier powder is an aggregates of carrier fine particles; the carrier fine particles includes a chained portion structured by a plurality of crystallites being fusion bonded to form a chain; the carrier fine particles include titanium oxide; the carrier fine particles are doped with an element having a valence different from a valence of titanium; the titanium oxide of the carrier powder has an anatase phase/rutile phase ratio of 0.2 or lower; the metal fine particles have a mean particle size of 3 to 10 nm; the metal fine particles include platinum; and a cell resistance measured under standard conditions of a fuel cell prepared using the carrier metal catalyst is 0.090 ?·cm2 or lower.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: November 15, 2022
    Assignee: UNIVERSITY OF YAMANASHI
    Inventors: Katsuyoshi Kakinuma, Makoto Uchida, Akihiro Iiyama
  • Patent number: 11495803
    Abstract: A cathode configured to use oxygen as a cathode active material includes: a porous electrically conductive framework substrate; and a coating layer disposed on a surface of the porous electrically conductive framework substrate, wherein the coating layer includes at least one of a lithium-containing metal oxide or a composite including a lithium-containing metal oxide, and wherein a porosity of the porous electrically conductive framework substrate is about 70 percent to about 99 percent, based on a total volume of the cathode, and an areal resistance of the porous electrically conductive framework substrate is about 0.01 milliohms per square centimeter to about 100 milliohms per square centimeter.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 8, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Mokwon Kim, Jungock Park, Hyunpyo Lee
  • Patent number: 11482730
    Abstract: A lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution containing a polycyclic aromatic compound.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: October 25, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toru Odani, Kazumasa Takeshi
  • Patent number: 11482724
    Abstract: An electrochemical cell for a lithium accumulator comprising: a negative electrode comprising metallic lithium as active material; a positive electrode associated with an aluminium current collector; and an electrolyte placed between the negative electrode and the positive electrode, wherein the negative electrode is provided with a layer comprising a compound containing aluminium at its face in contact with the electrolyte, and in that the electrolyte comprises at least one lithium salt chosen from among lithium imide, lithium triflate, lithium perchlorate salts and mixtures thereof.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: October 25, 2022
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Yvan Reynier, Céline Barchasz
  • Patent number: 11476498
    Abstract: Provided is a composite solid electrolyte membrane for an all-solid-state secondary battery, including: a phase transformation layer containing a plasticizer and a lithium salt; a porous polymer sheet layer; and a solid polymer electrolyte layer, wherein the phase transformation layer, the porous polymer sheet layer and the solid polymer electrolyte layer are stacked successively, and the phase transformation layer is disposed in such a manner that it faces a negative electrode when manufacturing an electrode assembly. An all-solid-state secondary battery including the composite solid electrolyte membrane is also provided. The composite solid electrolyte membrane for an all-solid-state secondary battery reduces the interfacial resistance with an electrode, increases ion conductivity, and improves the safety of a battery.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: October 18, 2022
    Inventors: Ji-Hoon Ryu, Guilong Jin, Ji-Hee Ahn, Sung-Joong Kang, Jae-Hyun Lee
  • Patent number: 11476544
    Abstract: An adhesive composition for an electrical storage device contains a polymer A and a solvent. The polymer A includes a nitrile group-containing monomer unit in a proportion of more than 50.0 mass % and not more than 90.0 mass %, and also includes an alicyclic (meth)acrylic acid ester monomer unit.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: October 18, 2022
    Assignee: ZEON CORPORATION
    Inventor: Kenji Arai
  • Patent number: 11476467
    Abstract: The present invention provides a battery electrode comprising an active battery material enclosed in the pores of a conductive nanoporous scaffold. The pores in the scaffold constrain the dimensions for the active battery material and inhibit sintering, which results in better cycling stability, longer battery lifetime, and greater power through less agglomeration. Additionally, the scaffold forms electrically conducting pathways to the active battery nanoparticles that are dispersed. In some variations, a battery electrode of the invention includes an electrically conductive scaffold material with pores having at least one length dimension selected from about 0.5 nm to about 100 nm, and an oxide material contained within the pores, wherein the oxide material is electrochemically active.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 18, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, John J. Vajo, Ping Liu, Elena Sherman
  • Patent number: 11469419
    Abstract: The present technology relates to a sulfur-containing polymer or organic compound for use in a positive electrode material, especially in lithium batteries. More specifically, the use of this sulfur-containing polymer or compound as an active electrode material makes it possible to combine sulfur and an active organic cathode material. The present technology also relates to the use of the sulfur-containing polymer or organic compound as defined herein as a solid polymer electrolyte (SPE) or as an additive for electrolyte, especially in lithium batteries.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 11, 2022
    Assignee: HYDRO-QUEBEC
    Inventors: Rachel Lévesque-Bélanger, Andrea Paolella, Jean-Christophe Daigle, Basile Commarieu, Michel Armand, Karim Zaghib
  • Patent number: 11453808
    Abstract: An adhesive composition for an electrical storage device contains a polymer A and a solvent. The polymer A includes an alicyclic (meth)acrylic acid ester monomer unit in a proportion of not less than 50.0 mass % and not more than 90.0 mass %, and also includes a nitrile group-containing monomer unit.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 27, 2022
    Assignee: ZEON CORPORATION
    Inventor: Kenji Arai
  • Patent number: 11456465
    Abstract: A method for producing a bipolar plate for a fuel cell stack includes the following steps: providing two half-plates made of sheet metal, which form the bipolar plate when arranged on top of one another, wherein the half-plates are profiled via deformation of the sheet metal, and wherein, as a result of the profiling, the two half-plates arranged on top of one another contact at at least one contact region and do not contact at at least one non-contact region; carrying out at least one first cut in the non-contact region of at least one half-plate, before the half-plates are arranged on top of one another; Arranging the two half-plates on top of one another and connecting same; and carrying out at least a second cut in the contact region through both half-plates after they have been arranged on top of one another and connected.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: September 27, 2022
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Stefan Haase
  • Patent number: 11453311
    Abstract: The present application provides a battery thermal management system, a control method and device of a battery heating system, a device, and a medium. The method includes: acquiring a temperature rise rate parameter of the battery; determining proportions of a square wave signal and a sine wave signal in a first control signal of the switch components according to the temperature rise rate parameter; generating the first control signal of the switch components according to the proportions of the square wave signal and the sine wave signal; outputting the first control signal to the switch components to control switching on or off of the switch components via the first control signal, so as to generate an alternating current in a loop connecting the battery and the motor and heat the battery using the alternating current.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: September 27, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Xiaojian Huang, Xiong Zheng, Xiyang Zuo, Zhimin Dan, Bao Li
  • Patent number: 11444312
    Abstract: Layered energy storage devices and methods of forming the layered energy storage devices are disclosed herein. The layered energy storage devices include a first device layer, a second device layer, an intermediate layer, and an interlock structure. The first device layer defines a first electrode, and the second device layer defines a second electrode. The intermediate layer extends between, and electrically separates, the first electrode and the second electrode. The intermediate layer includes an electrolyte material configured to facilitate ion transport between the first electrode and the second electrode. The interlock structure is at least partially defined by the first device layer and also by the second device layer. The interlock structure is configured to operatively interlock the first device layer, the second device layer, and the intermediate layer to one another. The methods include methods of forming the layered energy storage devices.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 13, 2022
    Assignee: The Boeing Company
    Inventor: Roger D. Bernhardt
  • Patent number: 11437639
    Abstract: The present invention relates to a solid oxide fuel cell especially protonic ceramic fuel cell which can operate at intermediate temperature and fuel cell thereof. The composition comprising a formula BaCe0.7Zr0.25-xYxZn0.05O3-? or BaCe0.7Zr0.1Y0.2-xPrxO3-?, wherein x=0.05, 0.1, 0.15, 0.2 or 0.25 to vary Zr and Y percentage at the B-site, and Ba=100%, Ce=70%; and Zn=5%.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 6, 2022
    Assignee: Universiti Brunei Darussalam
    Inventors: Abul Kalam Azad, Ahmed Afif bin Abedin, Sumon Reza, Shahzad Hossain, Juliana Zaini