Patents Examined by Sarah A Slifka
  • Patent number: 11728519
    Abstract: The secondary battery includes: a square battery case; and a wound electrode body accommodated in the battery case. The wound electrode body has a positive electrode sheet and a negative electrode sheet overlapping with each other to be wound about a winding axis to have a rectangular shape when seen from a winding axis direction. The wound electrode body has corner parts positioned at four corners of the wound electrode body when seen from the winding axis direction. The positive electrode sheet has a positive electrode collector and a positive electrode active material layer. The negative electrode sheet has a negative electrode collector and a negative electrode active material layer. Folding grooves are formed along the winding axis direction at portions of the positive electrode active material layer or portions of the negative electrode active material layer that are positioned at the corner parts.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: August 15, 2023
    Assignee: PRIME PLANET ENERGY & SOLUTIONS, INC.
    Inventors: Masafumi Kadoi, Takahiro Sakurai, Yasuhiro Sakashita
  • Patent number: 11725340
    Abstract: The present invention relates to novel lignin-derived compounds and compositions comprising the same and their use as redox flow battery electrolytes. The invention further provides a method for preparing said compounds and compositions as well as a redox flow battery comprising said compounds and compositions. Additionally, an assembly for carrying out the inventive method is provided.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: August 15, 2023
    Assignee: CMBlu Energy AG
    Inventors: Nastaran Krawczyk, Alexander Moeller, Peter Geigle, Evgeny Larionov, Jan Hartwig
  • Patent number: 11715826
    Abstract: A method for producing an electrode for a non-aqueous secondary battery is provided, the method includes: mixing a compound containing lithium, a compound containing nickel, and barium titanate to obtain a mixture; heat-treating the mixture to obtain a first composition containing a lithium-transition metal composite oxide; preparing an electrode composition containing the first composition, a conductive aid, and a binder; and applying and compressing the electrode composition on a current collector to form an active material layer with a density of from 2.4 g/cm3 to 3.6 g/cm3 on the current collector.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: August 1, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Shunsuke Sawada, Hideyuki Kanechika, Masahiro Murayama
  • Patent number: 11705572
    Abstract: A fuel cell includes a membrane electrode assembly having electrodes disposed on both surfaces of an electrolyte membrane, a gas diffusion layer stacked on one surface of the membrane electrode assembly, a resin frame assembled onto the one surface of the membrane electrode assembly so as to surround the outer periphery of the gas diffusion layer apart from the outer periphery of the gas diffusion layer, and a resin sheet disposed between the gas diffusion layer and the resin frame, and the membrane electrode assembly so as to fill a space between the inner periphery of the resin frame and the outer periphery of the gas diffusion layer.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: July 18, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Makoto Adachi, Katsuhiko Kinoshita, Yu Ashitaka, Naohiro Mitani, Yusuke Watanabe, Kenji Sato
  • Patent number: 11699821
    Abstract: Battery packs are presented having structural members for improving thermal management of battery cells therein. In some embodiments, the battery packs include a first end-member positioned opposite a second end-member and parallel thereto. The battery packs also include a first side beam positioned opposite a second side beam and parallel thereto. The first side beam and the second side beam extend longitudinally between the first end-member and the second end-member. A longitudinal member is disposed between the first side beam and the second side beam and defines a plurality of longitudinal rows. The battery packs may additionally include a lateral member disposed between first end-member and the second end-member to partition the plurality of longitudinal rows into an array of battery cell compartments. A battery cell is disposed within at least one battery cell compartment.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: July 11, 2023
    Assignee: Apple Inc.
    Inventors: Josef L. Miler, Luke A. Wilhelm, Andrew C. Chu
  • Patent number: 11688861
    Abstract: In order to provide a bipolar plate for a fuel cell, providing an anode plate with an anode side and a coolant side, wherein a first structuring for forming an anode flow field is formed on the anode side, and a cathode plate with a cathode side and a coolant side, wherein a second structuring for forming a cathode flow field is formed on the cathode side; wherein structural elements, which are contacted by the coolant sides of the anode plate and the cathode plate, for forming a coolant flow field, are arranged between the anode plate and the cathode plate, which bipolar plate has an optimized pressure distribution in a fuel cell stack and increased stability in comparison with the prior art, it is proposed that the structural elements may be made of an elastic material and that the structural elements have a different height in different regions of the coolant flow field. A fuel cell stack and a vehicle are also disclosed.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: June 27, 2023
    Assignee: Audi AG
    Inventors: Adel Jilani, Sanjiv Kumar, Radu P. Bradean, Sebastian Voigt
  • Patent number: 11682771
    Abstract: An electrochemical cell according to an embodiment includes a hydrogen electrode, an electrolyte laminated on the hydrogen electrode, a barrier-layer laminated on the electrolyte, and an oxygen electrode laminated on the barrier-layer. The barrier-layer has a porous structure having a thickness of greater than 20 ?m and a porosity of greater than 10%.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: June 20, 2023
    Assignee: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Norikazu Osada, Tsuneji Kameda
  • Patent number: 11664545
    Abstract: A charging system includes an electric vehicle having a battery coolant circuit including a charging heat exchanger and a battery as well as a charging station including a charging coolant and a cooling heat exchanger for cooling the charging coolant. The charging coolant is selectively placed in fluid communication and heat exchange communication with the charging heat exchanger of the electric vehicle. The charging heat exchanger is disposed on a charging coolant flow path formed in the electric vehicle that extends from an inlet port configured for coupling to an inlet fitting of the charging station to an outlet port configured for coupling to an outlet fitting of the charging station.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 30, 2023
    Assignee: HANON SYSTEMS
    Inventors: Nicos Agathocleous, Daniel Lumley, David Diebel
  • Patent number: 11664558
    Abstract: The invention relates to a separator for non-aqueous-type electrochemical devices that has been coated with a polymer binder composition having polymer particles of two different sizes, one fraction of the polymer particles with a weight average particle size of less than 1.5 micron, and the other fraction of the polymer particles with a weight average particle size of greater than 1.5 microns. The bi-modal polymer particles provide an uneven coating surface that creates voids between the separator and adjoining electrodes, allowing for expansion of the battery components during the charging and discharging cycle, with little or no increase in the size of the battery itself. The bi-modal polymer coating can be used in non-aqueous-type electrochemical devices, such as batteries and electric double layer capacitors.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 30, 2023
    Assignee: Arkema Inc.
    Inventors: Amy A. Lefebvre, Thomas Fine, James F. Coffey, Ramin Amin-Sanayei, Wensheng He
  • Patent number: 11658338
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: May 23, 2023
    Assignee: QuantumScape Battery, Inc.
    Inventors: Oleh Karpenko, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Dong Hee Anna Choi, Mohit Singh, Adrian Winoto
  • Patent number: 11658353
    Abstract: A negative electrode active material includes graphite and silicon oxide. On a rectangular coordinate system having an SOC of the battery on a horizontal axis and a dimension of the battery on a vertical axis, a charging profile of the battery includes a first stage and a second stage. When the battery is charged at a current rate equal to or higher than an inherent current rate, a first slope is less steep than a second slope. When the battery is charged at a current rate lower than the inherent current rate, the first slope is steeper than the second slope. During the initial charging, at least charging in the first stage is performed at a current rate lower than the inherent current rate. After the initial charging proceeds to the second stage, the thermal aging is performed at an SOC included in the second stage.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: May 23, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki Iguchi
  • Patent number: 11658340
    Abstract: The present invention relates to a thermosetting electrolyte composition for a lithium secondary battery and a lithium secondary battery including the same, and particularly, to a thermosetting electrolyte composition for a lithium secondary battery, which includes LiPF6 as a first lithium salt, a non-aqueous organic solvent, and a polymer or oligomer containing a unit represented by Formula 1, wherein the polymer or oligomer containing the unit represented by Formula 1 is included in an amount of 0.6 wt % to 15 wt % based on a total weight of the thermosetting electrolyte composition for a lithium secondary battery, and a lithium secondary battery including the same.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: May 23, 2023
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Jae Won Lee, Kyoung Ho Ahn, Chul Haeng Lee, Jung Hoon Lee, Won Kyung Shin
  • Patent number: 11652230
    Abstract: Energy storage devices, battery cells, and rechargeable batteries of the present technology may include an anode and a cathode. The battery cells may include a separator positioned between the anode and the cathode. The battery cells may include an electrolyte incorporated with the anode and the cathode. The battery cells may also include a pseudo-reference electrode at least partially in contact with the electrolyte. The pseudo-reference electrode may be positioned between layers of the separator.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: May 16, 2023
    Assignee: Apple Inc.
    Inventors: Alexander A. Gorer, William A. Braff, Steven Kaye, Cory R. O'Neill
  • Patent number: 11646427
    Abstract: An example composition is disclosed. For example, the composition includes a ultra-violet (UV) curable mixture of water, an acid, a phosphine oxide with one or more photoinitiators, a water miscible polymer, a salt, and a neutralizing agent. The composition can be used to form an electrolyte layer that can be cured in the presence of air when printing the thin-film battery.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: May 9, 2023
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Biby Esther Abraham, Gregory McGuire, Robert Black, Alexis Laforgue
  • Patent number: 11646402
    Abstract: An electrochemical pretreatment method of a vanadium positive electrode for a lithium secondary battery, which can improve the lifetime characteristics of the positive electrode and the battery by inhibiting the leaching of vanadium when charging and discharging the lithium secondary battery using, for instance, vanadium oxide (V2O5) as a positive electrode, and a vanadium positive electrode for a lithium secondary battery pretreated thereby. The electrochemical pretreatment method of the vanadium positive electrode for a lithium secondary battery includes a) a step of discharging the lithium free vanadium positive electrode at a voltage of 1.9 V or more; b) an electrochemical pretreatment step of maintaining the discharged vanadium positive electrode of a) at an onset potential value or a potential value having a maximum current through a potentiostat; and c) a step of charging and discharging the pretreated vanadium positive electrode of b) at a voltage range of 2.1V to 4.0V.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 9, 2023
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Wansoo Chang, Jonghyun Chae, Suhwan Kim, Sung Chul Lim
  • Patent number: 11637318
    Abstract: A process can be used to produce a charge storage unit, especially a secondary battery, the electrodes of which contain an organic redox-active polymer, and which includes a polymeric solid electrolyte. The solid electrolyte is obtained by polymerizing from mixtures of acrylates with methacrylates in the presence of at least one ionic liquid, which imparts advantageous properties to the charge storage unit.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 25, 2023
    Assignee: InnovationLab GmbH
    Inventors: Andreas Wild, Michael Korell, Simon M√ľnch, Alexandra Lex-Balducci, Johannes Brendel, Ulrich Sigmar Schubert
  • Patent number: 11618800
    Abstract: Disclosed are maleic anhydride-grafted cyclic olefin copolymers, methods for preparing maleic anhydride-grafted cyclic olefin copolymers, low temperature methods for laminating anodes comprising the maleic anhydride-grafted cyclic olefin copolymers, and anodes and alkali ion batteries that comprise the maleic anhydride-grafted cyclic olefin copolymers.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: April 4, 2023
    Assignee: Enevate Corporation
    Inventors: Ambica Nair, Giulia Canton, Ian Browne, Michael Buet
  • Patent number: 11616377
    Abstract: A smart cell, comprising: a positive terminal; a negative terminal; a switching circuit which is arranged to select between a first switching state in which an energy storage device is connected between the positive terminal and the negative terminal and a second switching state which bypasses said energy storage device; an inductor provided between the positive terminal and the output of the switching network; and a controller arranged to monitor the voltage across the inductor and arranged to control a duty cycle of the switching circuit based on the magnitudes of voltage changes detected across the inductor. By monitoring and analysing the magnitude of voltage changes across the inductor, the controller determines the states of charge of other series connected smart cells without any communication between cells.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: March 28, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Damien Frost, David Howey
  • Patent number: 11616244
    Abstract: An electrochemical apparatus includes: a reformer that produces a first hydrogen-containing gas by reforming a raw material; a combustor that heats the reformer; an electrochemical device that includes an anode and a cathode, the electrochemical device operating by using the first hydrogen-containing gas supplied to the anode; a first flow rate controller that controls a flow rate of the first hydrogen-containing gas supplied to the anode and a flow rate of a second hydrogen-containing gas supplied from a supply source, the second hydrogen-containing gas being different from the first hydrogen-containing gas; a second flow rate controller that controls a flow rate at which an anode-off gas exhausted from the anode is recycled to the anode and a flow rate at which the anode-off gas is supplied to the combustor; and a controller that controls the first flow rate controller and the second flow rate controller.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: March 28, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Takashi Oto
  • Patent number: 11605823
    Abstract: The present disclosure provides a fuel cell system that allows greater convenience and smaller size to be achieved. The fuel cell system of the disclosure comprises a fuel cell module and a liquid water discharge channel for discharge of liquid water in the fuel cell module. The fuel cell module comprises a battery stack, a reactive gas discharge manifold formed so that, during use of the fuel cell system, reactive gas flows from the lower end in the vertical direction to the upper end in the vertical direction, a reactive gas discharge outlet disposed so as to be located at the upper end of the reactive gas discharge manifold in the vertical direction, and a liquid water discharge outlet disposed so as to be located at the lower end of the reactive gas discharge manifold in the vertical direction. The liquid water discharge channel is connected to the liquid water discharge outlet in such a manner that liquid water flows through its interior.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 14, 2023
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yasushi Takahashi