Patents Examined by Sean P Hagan
  • Patent number: 10636716
    Abstract: Examples of an electronic package include a package assembly. The package assembly can include a substrate having a first substrate surface that includes a conductive layer attached to the first substrate surface. The package assembly includes a die communicatively coupled to the conductive layer and a contact block that includes a first contact surface on one end of the contact block, a second contact surface on an opposing side of the contact block, and a contact block wall extended therebetween. The contact block can include a conductive material. The first contact surface can be coupled to the package assembly with a joint extended partially up the contact block wall. The electronic package can further include an overmold covering portions of the substrate, conductive layer, and die. The second contact surface of the contact block can be exposed through the overmold.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Sasha Oster, Srikant Nekkanty, Joshua D. Heppner, Adel A. Elsherbini, Yoshihiro Tomita, Debendra Mallik, Shawna M. Liff, Yoko Sekihara
  • Patent number: 10608400
    Abstract: Devices and techniques that use nonlinear optical effects in optical fiber to generate optical pulses via nonlinear optical wave mixing for various applications such as coherent Raman microscopic measurements and optical parametric oscillators. In some implementations, a tunable optical delay path is provided to cause an adjustable delay for synchronizing two optical beams of optical pulses.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 31, 2020
    Assignee: Cornell University
    Inventors: Frank Wise, Simon Lefrancois
  • Patent number: 10574028
    Abstract: The present disclosure provides a unique digitally integrated, self-trained pre-distortion curve generation method and apparatus for semiconductor lasers (SCLs) to generate linearly swept optical signals that are applicable to a wide range of sweep velocities and semiconductor laser types. The method requires no prior knowledge of the frequency response of the laser and is highly accurate.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: February 25, 2020
    Assignee: Rhode Island Council on Postsecondary Education
    Inventors: Tao Wei, Zheyi Yao, Yan Sun
  • Patent number: 10574033
    Abstract: In the arrayed semiconductor optical device, a plurality of semiconductor optical devices including a first semiconductor optical device and a second semiconductor optical device are monolithically integrated on a semiconductor substrate, each of the semiconductor optical devices includes a first semiconductor layer having a multiple quantum well layer and a grating layer disposed on an upper side of the first semiconductor layer, a layer thickness of the first semiconductor layer of the first semiconductor optical device is thinner than a layer thickness of the first semiconductor layer of the second semiconductor optical device, and a height of the grating layer of the first semiconductor optical device is lower than a height of the grating layer of the second semiconductor optical device corresponding to difference in the layer thickness of the first semiconductor layer.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: February 25, 2020
    Assignee: Lumentum Japan, Inc.
    Inventors: Takeshi Kitatani, Koichiro Adachi
  • Patent number: 10554018
    Abstract: The invention is directed to a hybrid, vertical current injection electro-optical device, comprising an active region and one or more current blocking layers. The active region includes a stack of III-V semiconductor gain materials designed for optical amplification. The gain materials of the stack are stacked along a stacking direction z, which is perpendicular to a main plane of the stack. The one or more current blocking layers extend perpendicularly to the stacking direction z and laterally on opposite sides of the active region. The one or more current blocking layers each have an effective refractive index n1 that is matched to the effective refractive index n of the active region, i.e., n1=f×n, with f?[0.95; 1.05]. The invention is further directed to a silicon photonics chip comprising such an electro-optical device.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Gustavo Ferreira Villares, Herwig Hahn, Marc Seifried
  • Patent number: 10554017
    Abstract: Edge-emitting laser diodes having high confinement factors and lattice-matched, porous cladding layers are described. The laser diodes may be formed from layers of III-nitride material. A cladding layer may be electrochemically etched to form a porous cladding layer having a high refractive index contrast with an active junction of the device. A transparent conductive oxide layer may be deposited to form a top-side cladding layer with high refractive index contrast and low resistivity.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: February 4, 2020
    Assignee: Yale University
    Inventors: Jung Han, Yufeng Li, Ge Yuan
  • Patent number: 10546857
    Abstract: A complementary metal oxide semiconductor (CMOS) vertical transistor structure with closely spaced p-type and n-type vertical field effect transistors (FETs) is provided. After forming a dielectric material portion contacting a proximal sidewall of a first semiconductor fin for formation of a p-type vertical FET and a proximal sidewall of a second semiconductor fin for formation of an n-type vertical FET, a first gate structure is formed contacting a distal sidewall of the first semiconductor fin, and a second gate structure is formed contacting a distal sidewall of the second semiconductor fin. Because no gate structures are formed between the first and second semiconductor fins, the p-type vertical FET is spaced from the n-type FET only by the dielectric material portion.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: January 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10530123
    Abstract: A drive circuit is configured to supply a current to a light emitting element. The drive circuit includes a plurality of switching elements configured to switch between ON/OFF states with a modulation signal, a capacitor connected in parallel with the light emitting element, and a control module configured to control the switching elements so that a voltage of the capacitor does not become lower than a threshold.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 7, 2020
    Assignee: RICOH COMPANY, LTD.
    Inventors: Yuuki Oka, Tsuyoshi Ueno, Seiya Abe
  • Patent number: 10530119
    Abstract: A wavelength locker includes a splitter configured to split a portion of light that is output from a light source into a first monitoring light and a second monitoring light; a first periodic filter configured to receive the first monitoring light; a second periodic filter configured to receive the second monitoring light; a first optical receiver configured to monitor an intensity of light that has passed through the first periodic filter; and a second optical receiver configured to monitor an intensity of light that has passed through the second periodic filter, wherein the first periodic filter and the second periodic filter each has a wavelength characteristic in which an intensity of transmitted light changes periodically with respect to a wavelength, and the wavelength characteristic of the first periodic filter and the wavelength characteristic of the second periodic filter shift in opposite wavelength directions when temperature changes.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 7, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Kazumasa Takabayashi, Suguru Akiyama
  • Patent number: 10530124
    Abstract: Examples of the present disclosure include a tunable laser comprising an optical coupler to couple light between a first laser cavity and a second laser cavity. The first laser cavity may extending between the optical coupler and a first reflector and include a first gain section. The second laser cavity may extend between the optical coupler and a second reflector and including a second gain section. At least one of the first laser cavity and the second laser cavity is tunable.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: January 7, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne V Sorin, Joaquin Matres Abril, Sagi Mathai
  • Patent number: 10522473
    Abstract: A package includes a device die, a molding material molding the device die therein, a through-via penetrating through the molding material, and an alignment mark penetrating through the molding material. A redistribution line is on a side of the molding material. The redistribution line is electrically coupled to the through-via.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Hsien Huang, Hsien-Wei Chen, Ching-Wen Hsiao, Der-Chyang Yeh, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 10505345
    Abstract: A mode locking semiconductor disk laser (SDL) comprising a resonator terminated by first and second mirrors and folded by a third mirror is presented. The third mirror includes a semiconductor disk laser (SDL) suitable for generating a resonator field having a predetermined central wavelength ?0, while the second mirror includes an intensity saturable mirror suitable for mode locking the resonator field at the predetermined wavelength. The central wavelength of the reflectivity profile of the first and or second mirrors is shifted to a wavelength shorter than the central wavelength ?0 to suppress gain at wavelengths longer than the central wavelength ?0. By mismatching the reflectivity profile of the first and or second mirrors to that of the desired output wavelength provides a stable mode locked laser with significantly reduced noise.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: December 10, 2019
    Assignee: Solus Technologies Limited
    Inventors: Craig James Hamilton, Graeme Peter Alexander Malcolm
  • Patent number: 10502632
    Abstract: A tunable laser system includes a tunable laser to be scanned over a range of frequencies and an interferometer having a plurality of interferometer outputs. At least two interferometer outputs of the plurality of interferometer outputs have a phase difference. A wavelength reference has a spectral feature within the range of frequencies, and the spectral feature does not change in an expected operating environment of the tunable laser. Processing circuitry uses the spectral feature and the plurality of interferometer outputs to produce an absolute measurement of a wavelength of the tunable laser and controls the tunable laser based on a comparison of the absolute measurement of the wavelength of the tunable laser with a setpoint wavelength.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: December 10, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ryan Seeley, Mark E. Froggatt
  • Patent number: 10505331
    Abstract: A CO2 laser that generates laser-radiation in just one emission band of a CO2 gas-mixture has resonator mirrors that form an unstable resonator and at least one spectrally-selective element located on the optical axis of the resonator. The spectrally-selective element may be in the form of one or more protruding or recessed surfaces. Spectral-selectivity is enhanced by forming a stable resonator along the optical axis that includes the spectrally-selective element. The CO2 laser is tunable between emission bands by translating the spectrally-selective element along the optical axis.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: December 10, 2019
    Assignee: Rofin-Sinar Laser GmbH
    Inventors: Peter Rosenthal, Jens Schüttler, Florian Engel, Gongxue Hua
  • Patent number: 10498104
    Abstract: Embodiments are notably directed to a vertical microcavity. The vertical microcavity includes a first reflector and a second reflector, each of which includes one or more material layers extending perpendicular to a vertical axis x. The cavity may further include a confinement region extending between the first reflector and the second reflector, so as to be able to confine an electromagnetic wave. The confinement region may include a single layer material, which is structured so as to create an effective refractive index variation for the electromagnetic wave to be confined, in an average plane of the single layer material, perpendicularly to said vertical axis x. Additional examples are further directed to related microcavity systems and methods of fabrication.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: December 3, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kristian Samuel Cujia Pena, Thilo Hermann Stoeferle
  • Patent number: 10490975
    Abstract: A damping circuit having an input terminal and an output terminal is described. The damping circuit comprises a driver having an input and an output; an RC circuit coupled between the input terminal and the output; and a resistor coupled between the output and the output terminal, wherein the RC circuit delays passing a signal from the output terminal to the input terminal and a low impedance associated with the driver generally reduces ringing.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: November 26, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas Warren Dean, Craig Matthew Brannon
  • Patent number: 10483424
    Abstract: A signal coupling device includes a light-emitting element configured to emit light, a first element to drive the light-emitting element to output an optical signal, and a second element to receive the optical signal from the light-emitting element and to convert the optical signal into an electrical signal. A first silicone gel covers the first semiconductor element. A second silicone gel covers the second semiconductor element. A third silicone gel covers the light-emitting element. The light-emitting element, the first semiconductor element, and the second semiconductor element are encapsulated in resin material, which contacts the first, second, and third silicone gels. The first silicone gel, the second silicone gel, the third silicone gel, and the first resin material, and the resin material are transparent to light emitted by the light-emitting element. The first, second, and third silicone gels are spaced apart from each other.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: November 19, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yuta Kugiyama
  • Patent number: 10461500
    Abstract: A method for sweeping an electromagnetic radiation source (12) to produce single mode operation having an optimized side-mode suppression ratio over a continuous range of wavelengths within a prescribed temporal profile, the electromagnetic radiation source is configured to output electromagnetic radiation at a given wavelength based upon parameters. The method includes determining a set of parameter combinations that satisfy a condition for a desired set of wavelengths and a maximum side mode suppression ratio over the range of wavelengths. The set of parameter combinations define sub-paths for transitioning from one wavelength to another wavelength. Combinations of select sub-paths provide a multivariate path for transitioning over the range of wavelengths. The method also includes controlling the semiconductor laser to emit electromagnetic radiation over the range of wavelengths by traversing the multivariate path in a desired manner.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 29, 2019
    Assignee: INSIGHT PHOTONIC SOLUTIONS, INC.
    Inventors: Michael Minneman, Jason Ensher, Michael Crawford
  • Patent number: 10447010
    Abstract: Provided herein are a method and apparatus for controlling the wavelength of an external-cavity wavelength-tunable laser. The reflectivity or transmittance characteristics of a wavelength depend on the phase difference between light reflected by a wavelength-tunable filter and parasitic reflective light. Thus, when the temperature of a module and current applied to a phase control electrode and an external reflector are changed, the characteristics are changed in a periodic manner. The present disclosure relates to a wavelength control algorithm of determining combinations of these parameters to set conditions having optimum chirping characteristics at a desired wavelength.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: October 15, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Byung-Seok Choi
  • Patent number: 10439358
    Abstract: A method of manufacturing a light-emitting device includes providing a base body including a base section; fixing a plurality of semiconductor laser elements on an upper surface of the base section; and fixing an optical member to the base body, the optical member including a plurality of lens sections, and a non-lens section disposed at a periphery of the plurality of lens sections in a top view. In the step of fixing the optical member: the optical member is arranged above the base body; (i) an inclination and a height of the optical member are adjusted after interposing an adhesive between the base body and the non-lens section, or (ii) an adhesive is interposed between the base body and the non-lens section after adjusting the inclination and the height of the optical member; and subsequently, the adhesive is cured to fix the optical member to the base body.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: October 8, 2019
    Assignee: NICHIA CORPORATION
    Inventors: Soichiro Miura, Seiji Kiyota, Eiichiro Okahisa