Patents Examined by Seema Mathew
  • Patent number: 11484412
    Abstract: The present invention relates to an implant (10) comprising an implant body having a first surface area (A1, A2, A3, A4) configured for contact with soft connective tissue and a second surface area configured for contact with bone tissue, wherein the first surface area is covered with a coating comprising tantalum and the second surface area is formed by a material, which is different than the one forming the coating.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 1, 2022
    Assignee: Waldemar Link GmbH & Co. KG
    Inventor: Helmut D. Link
  • Patent number: 11478351
    Abstract: Embodiments of a heart shape preserving anchor are disclosed herein. The heart shape preserving anchor can include a frame having one or more wings extending from a lower end of the frame. The frame can be sized and shaped to distribute forces over a large surface area thereby reducing pressures applied on the heart. The anchor can include a tether for coupling to a prosthesis, such as a replacement heart valve prosthesis. In some embodiments, the anchor can include a tether adjustment mechanism which can be wirelessly operated to adjust a length of the tether relative to the frame.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: October 25, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Yaron Keidar
  • Patent number: 11471311
    Abstract: A stent delivery device having a delivery configuration for delivering a stent to a treatment location and a deployment configuration for deploying the stent at the treatment location may include an outer sheath, an inner shaft slidably disposed within a lumen of the outer sheath, and a distal tip member fixedly attached to a distal end of the inner shaft. A distal portion of the outer sheath may include a plurality of longitudinal strips circumferentially disposed about the lumen of the outer sheath. At least a portion of the distal tip member may be configured to slide over a distal end of the outer sheath in the delivery configuration.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 18, 2022
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventor: Martyn G. Folan
  • Patent number: 11471280
    Abstract: An annuloplasty band and method of implantation. The band is shaped and sized to avoid the adjacent aortic valve structure and better protects against dehiscence along the muscular mitral annulus. The band is asymmetric and when implanted spans more around the side of the mitral annulus having the posterior commissure than the side with the anterior commissure. The band has a saddle shape with a posterior upward bow centered on a minor axis of the mitral annulus, and a span extending clockwise therefrom is longer than a span extending counter-clockwise. A set of rings may have different saddle profiles and different plan view shapes for different sized bands. A method includes implanting so that the band extends over the posterior leaflet and a short distance past the posterior commissure outside of the anterior leaflet.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 18, 2022
    Assignee: Edwards Lifesciences, LLC
    Inventor: David H. Adams
  • Patent number: 11471568
    Abstract: A bioprosthetic valve for repairing a deep venous insufficiency in a subject includes a single leaflet from a xenogeneic heart valve attached at natural margins of attachment to a patch of valve wall tissue. The patch may extend axially above and below the leaflet and circumferentially on either side of the leaflet to provide a region for attaching the patch to a fenestration in a host vein. A bioprosthetic valve may be manufactured by excising a portion of a xenogeneic heart valve including a single leaflet and contiguous wall tissue, and may further comprise shaving off excess leaflet tissue from adjacent leaflets. A method of replacing a malfunctioning venous valve in a subject includes providing a bioprosthetic valve as described above and inserting it to the host vein.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: October 18, 2022
    Assignee: enVVeno Medical Corporation
    Inventor: Norman Jaffe
  • Patent number: 11452609
    Abstract: An interbody fusion cage having upper and lower canals for receiving the heads of bone screws that have been pre-installed in opposing vertebral body endplates. The proximal wall of the cage preferably has a vertical slot that communicates with each canal and is adapted to allow access by a screwdriver and tightening of the screws.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: September 27, 2022
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Michael A. Slivka, Alexander Grinberg, John C. Voellmicke, John Riley Hawkins
  • Patent number: 11439507
    Abstract: Apparatus and methods are described herein for use in the delivery of a prosthetic mitral valve. In some embodiments, an apparatus includes a tether fixer assembly configured to engage an outside surface of a heart to secure a prosthetic heart valve in position within the heart. The fixer assembly defines a lumen configured to receive therethrough a tether extending from the prosthetic valve and a movable portion. The fixer assembly is movable between a first configuration, in which the movable portion is disengaged with the tether, and a second configuration in which the movable portion is engaged with the tether. The fixer assembly can be disposed against an epicardial pad positioned on the outside surface of the heart when in the second configuration to secure the prosthetic valve, the epicardial pad and tether in a desired position within the heart.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: September 13, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Preston James Huddleston, Zachary Vidlund
  • Patent number: 11432922
    Abstract: An implant can include a plurality of polymeric fibers associated together into a fibrous body. The fibrous body is capable of being shaped to fit a tracheal defect and capable of being secured in place by suture or by bioadhesive. The fibrous body can have aligned fibers (e.g., circumferentially aligned) or unaligned fibers. The fibrous body can be electrospun. The fibrous body can have a first characteristic in a first gradient distribution across at least a portion of the fibrous body. The fibrous body can include one or more structural reinforcing members, such as ribbon structural reinforcing members, which can be embedded in the plurality of fibers. The fibrous body can include one or more structural reinforcing members bonded to the fibers with liquid polymer as an adhesive, the liquid polymer having a substantially similar composition of the fibers.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: September 6, 2022
    Assignees: The University of Kansas, The Children's Mercy Hospital
    Inventors: Michael Detamore, Lindsey Ott, Robert Weatherly
  • Patent number: 11399929
    Abstract: The vascular prosthesis includes a luminal graft component that defines at least one fenestration and a crimped adapter at the at least one fenestration. The crimped adapter includes a perimeter and an opening with a diameter smaller than the diameter of the fenestration, and includes a crimped portion of generally concentric folds about the opening. The opening can move relative to the perimeter region of the crimped adapter to accommodate positioning of a branch prosthesis extending through the crimped adaptor. The vascular prosthesis is implanted in a patient to thereby treat, for example, an arterial aneurysm that spans a region of an artery that includes at least one arterial branch.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: August 2, 2022
    Assignee: Bolton Medical, Inc.
    Inventor: Samuel Arbefeuille
  • Patent number: 11395742
    Abstract: A joint replacement device is provided that includes an inner surface configured to accommodate at least one of a portion of an outer surface of a femoral head of a femur and a prosthetic secured to the femoral head, an outer surface configured to accommodate at least one of a portion of an outer surface of an acetabulum socket and a prosthetic secured to a pelvis, wherein the inner surface and outer surface each have a circular curvilinear shape and together include an inner perimeter and an outer perimeter, and wherein the inner perimeter is joined to the outer perimeter to form a posterior limb and an anterior limb, and further including, a posterior portion, an anterior portion, and a superior portion formed from the inner surface and the outer surface; wherein the superior portion further includes a posterior superior portion and an anterior superior portion.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: July 26, 2022
    Assignee: Zimmer, Inc.
    Inventor: Patrick Birmingham
  • Patent number: 11395736
    Abstract: A prosthetic heart valve including a stent frame and a valve structure. The valve structure is disposed within a lumen of the stent frame. The stent frame is configured to self-expand from a compressed condition for transluminal delivery. The stent frame has a lattice structure forming a tubular shape defining a circumference and a plurality of closed cells arranged to define a band exhibiting a variable radial stiffness. The prosthesis can be deployed such that the band applies a minimal force on to anatomical locations relating to the heart's conductive pathways. A region of the band otherwise having low radial stiffness is located at or over a conductive pathway upon final implant.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: July 26, 2022
    Assignee: Medtronic Vascular Galway
    Inventors: Rodney Bell, Declan Costello
  • Patent number: 11389308
    Abstract: A lumen stent preform is provided using a plasma nitriding technology, a preparation method thereof, a method for preparing a lumen stent by using the preform, and a lumen stent obtained according to the method. The preform is manufactured by using pure iron or an iron alloy containing no strong nitrogen compound, has a hardness of 160-250HV0.05/10, and has a microstructure that is a deformed structure having a grain size number greater than or equal to 9 or a deformed structure after cold machining. Alternatively, the preform is an iron alloy containing a strong nitrogen compound, and has a microstructure that is a deformed structure having a grain size number greater than or equal to 9 or a deformed structure after cold machining. The lumen stent preform meets the requirements of a conventional stent for radial strength and plasticity, so that plasma nitriding is applicable to commercial preparation of a lumen stent.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 19, 2022
    Assignee: Biotyx Medical (Shenzhen) Co. Ltd.
    Inventors: Deyuan Zhang, Xianmiao Chen, Wenjiao Lin, Xiangdong Liu
  • Patent number: 11382741
    Abstract: A prosthetic heart valve includes a non-collapsible annular frame extending between an inflow edge and an outflow edge, the frame having a plurality of annularly spaced commissure posts adjacent the outflow edge. A valve assembly including a plurality of leaflets is connected to the frame. The frame includes a weakened portion such that the frame is expandable from an initial condition having a first diameter to an expanded condition having a second diameter larger than the first diameter when a radially outward force is applied to an inner surface of the frame. A stabilizing strut may be positioned adjacent the weakened portion to reinforce the frame. The prosthetic heart valve may include an expandable ring positioned around the expandable frame.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 12, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Tracee Eidenschink, Xiangyang Zhang, Nicholas V. Jepson, Ryan J. Nesler
  • Patent number: 11382740
    Abstract: A prosthetic heart valve is designed to be circumferentially collapsible for less invasive delivery into the patient. At the implant site the valve re-expands to a larger circumferential size, i.e., the size that it has for operation as a replacement for one of the patient's native heart valves. The valve includes structures that, at the implant site, extend radially outwardly to engage tissue structures above and below the native heart valve annulus. These radially outwardly extending structures clamp the native tissue between them and thereby help to anchor the prosthetic valve at the desired location in the patient.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: July 12, 2022
    Assignee: St. Jude Medical, LLC
    Inventor: Peter N. Braido
  • Patent number: 11376126
    Abstract: Disclosed herein are various embodiments of cardiac anchors configured to be inserted into a heart wall of a patient to anchor a suture as an artificial chordae under an appropriate tension for proper valve function. Such cardiac anchors are particularly suitable for use in intravascular, transcatheter procedures.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 5, 2022
    Assignee: NeoChord, Inc.
    Inventors: Edward J. Anderson, Randall Beyreis, Brady Hatcher, Tyler Nordmann, Daryl Edmiston
  • Patent number: 11337801
    Abstract: Some embodiments described herein include a heart valve replacement system that may be delivered to the targeted heart valve site via a delivery catheter. In some embodiments, the heart valve replacement system can assemble a valve device after the valve device is delivered to the heart. In some embodiments, heart valve replacement system includes two anterior flaps that are separate but overlap each other.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: May 24, 2022
    Assignee: Laplace Interventional Inc.
    Inventors: Ramji Iyer, Stephen Anderson, Samuel Thomas Johnson
  • Patent number: 11338064
    Abstract: A bioprosthetic valve for repairing a deep venous insufficiency in a subject includes a single leaflet from a xenogeneic heart valve attached at natural margins of attachment to a patch of valve wall tissue. The patch may extend axially above and below the leaflet and circumferentially on either side of the leaflet to provide a region for attaching the patch to a fenestration in a host vein. A bioprosthetic valve may be manufactured by excising a portion of a xenogeneic heart valve including a single leaflet and contiguous wall tissue, and may further comprise shaving off excess leaflet tissue from adjacent leaflets. A method of replacing a malfunctioning venous valve in a subject includes providing a bioprosthetic valve as described above and inserting it to the host vein.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: May 24, 2022
    Assignee: enVVeno Medical Corporation
    Inventor: Norman Jaffe
  • Patent number: 11337808
    Abstract: An annuloplasty ring including elastic features that make the ring optimal for receiving a subsequent prosthetic valve via a “Valve In Ring Procedure.” The elastic features provide a squeezing force on the native valve annulus that both ensures coaptation of the native valve leaflets and also prevents paravalvular leakage around a subsequently-placed prosthetic valve.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 24, 2022
    Assignee: Northwestern University
    Inventor: Patrick M. McCarthy
  • Patent number: 11324593
    Abstract: An annuloplasty band and method of implantation. The band is shaped and sized to avoid the adjacent aortic valve structure and better protects against dehiscence along the muscular mitral annulus. The band is asymmetric and when implanted spans more around the side of the mitral annulus having the posterior commissure than the side with the anterior commissure. The band has a saddle shape with a posterior upward bow centered on a minor axis of the mitral annulus, and a span extending clockwise therefrom is longer than a span extending counter-clockwise. The longer span may be 150° while the shorter span extends 90°. A set of rings may have different saddle profiles and different plan view shapes for different sized bands. A method includes implanting so that the band extends over the posterior leaflet and a short distance past the posterior commissure outside of the anterior leaflet.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 10, 2022
    Assignee: Edwards Lifesciences, LLC
    Inventor: David H. Adams
  • Patent number: 11324591
    Abstract: A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the frame can have a larger cross-sectional dimension in a middle portion of the frame and a smaller cross-sectional dimension in a proximal portion and a distal portion of the frame, wherein the middle portion is between the proximal and distal portions. As another example, the anchors can have looped ends, the entire anchor may loop out from the frame.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 10, 2022
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: J. Brent Ratz, Arshad Quadri, Luca Pesce