Patents Examined by Seema Mathew
  • Patent number: 10856973
    Abstract: A replacement heart valve implant may include a braided anchor member configured to actuate between a delivery configuration and a deployed configuration formed from a plurality of filaments, a circumferential seal member disposed about a distal portion of the anchor member and including a reinforcing band disposed at a distal end thereof, and a plurality of valve leaflets connected to the anchor member. The reinforcing band is secured to the anchor member adjacent a distal end of the anchor member by a plurality of lashings each attached to two individual filaments. The plurality of filaments defines a body section, a proximal crown section, and a distal crown section, wherein the proximal crown section includes a first plurality of end loops and a second plurality of end loops, wherein a proximalmost extent of the first plurality of end loops and the second plurality of end loops varies.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: December 8, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Andrew J. H. Backus, Ali Salahieh, Cornelius M. Crowley
  • Patent number: 10849627
    Abstract: A vascular implant device configured to decrease turbulence in blood flow through an arteriovenous fistula is described. The implant includes an arterial section having a straight hollow tube, a venous section having a curved hollow tube divided into an orthogonal portion at the juncture of the arterial section, a curved portion, and a straight extension portion, and having a continual lumen and lumen surface. The curved portion curves approximately 90 degrees with respect to the arterial section, and the extension portion extends substantially parallel to the arterial section. A plurality of flow-conditioning tabs are located along the lumen surface in arrangements precisely designed to convert the turbulent blood flow that enters the venous section into substantially laminar flow, and to minimize oscillatory shear stress on the venous endothelium as the blood flow exits the device and enters the vein.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 1, 2020
    Assignee: University of Cincinnati
    Inventors: Keith Louis Saum, Prabir Roy-Chaudhury, Begona Campos-Naciff, Diego Celdran-Bonafonte
  • Patent number: 10842612
    Abstract: The present disclosure provides devices and methods for treating the breast. The devices can include an acellular tissue matrix having a predefined shape. The shape can include a first edge with an S-shaped configuration and a second arcuate-shaped edge. The shape alternatively can include a first concave edge and a second convex edge.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 24, 2020
    Assignee: LifeCell Corporation
    Inventors: Aaron M. Barere, Sangwook Park, Evan J. Friedman, Kai-Roy Wang
  • Patent number: 10828167
    Abstract: An apparatus for the treatment of canine or other animal hip pathologies, the apparatus (200) comprising a buffer (210) adapted to be disposed between a femur (10) and a hip socket (25), and a fixing (250) adapted to fix the buffer to the femur.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: November 10, 2020
    Assignee: IDR-BIOMED LTD.
    Inventors: Tamir Hargittai, Haim Geva
  • Patent number: 10828157
    Abstract: A transcatheter atrio-ventricular valve prosthesis for functional replacement of an atrio-ventricular heart valve in a connection channel, the prosthesis comprising a radially expandable tubular body extending along an axis, and a valve arranged within and attached to the tubular body. The tubular body is provided with an outer circumferential groove which is open to the radial outside of the tubular body, whereby the tubular body is separated by the outer circumferential groove into first and second body sections. The tubular body is provided with a first plurality of projections which extend from the first or second body section in an axial direction of the tubular body and each of which has a free end arranged to overlap the outer circumferential groove. An elongate outer member may be disposed at the exterior of the connection channel wall structure at a level of the circumferential groove.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: November 10, 2020
    Assignee: HIGHLIFE SAS
    Inventors: Georg Börtlein, Malek Nasr
  • Patent number: 10828153
    Abstract: A prosthetic mitral valve includes an anchor assembly, a strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. The annular strut frame is disposed radially within the anchor assembly and is attached to the anchor assembly. The central portion is configured to align with a native valve orifice and the ventricular anchor and the atrial anchor are configured to compress native cardiac tissue therebetween.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 10, 2020
    Assignee: Cephea Valve Technologies, Inc.
    Inventors: Spencer Noe, Dan Wallace, Jonathan Oakden
  • Patent number: 10799343
    Abstract: An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 13, 2020
    Assignee: Medtronic, Inc.
    Inventors: Paul Rothstein, Jeffrey Sandstrom, Geoffrey Orth
  • Patent number: 10765501
    Abstract: A soft breast prosthesis is provided, the prosthesis having a surface configuration advantageous for dual plane placement of the prosthesis in a breast.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 8, 2020
    Assignee: ALLERGAN, INC.
    Inventors: Dennis E. Van Epps, David J. Schuessler
  • Patent number: 10758343
    Abstract: A stented valve including a stent structure including a generally tubular body portion having a first end, a second end, an interior area, a longitudinal axis, and a plurality of vertical wires extending generally parallel to the longitudinal axis around a periphery of the body portion, wherein the plurality of vertical wires includes multiple commissure wires and at least one structural wire positioned between adjacent commissure wires, and a plurality of V-shaped wire structures having a first end, a second end, and a peak between the first and second ends, wherein a first end of each V-shaped structure extends from a first vertical wire and a second end of each V-shaped structure extends from a second vertical wire that is adjacent to the first vertical wire, wherein each V-shaped structure is oriented so that its peak is facing in the same direction relative to the first and second ends of the body portion, and a valve structure including a plurality of leaflets attached to the stent structure within the
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: September 1, 2020
    Assignee: Medtronic, Inc.
    Inventors: Carol E. Eberhardt, Charles Tabor, Carolyn Majkrzak, Timothy R. Ryan, Melissa R. Young, Maria Awad, Janice L. Shay
  • Patent number: 10751165
    Abstract: An adjustable implant is disclosed herein. The adjustable implant may comprise a shell including membrane and a base and having a first diameter in a plane parallel to the base. A band may be disposed within the shell. The band may have a first end and a second end connected to a spool. The band may be in a round (e.g., elliptical) configuration having a second diameter in the plane that is less than the first diameter. By wrapping the band onto the spool, the diameter of the band may be decreased and the height of the implant may be increased. By unwrapping the band from the spool, the diameter of the band may be increased and the height of the implant may be decreased.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 25, 2020
    Assignee: MENTOR WORLDWIDE LLC
    Inventors: Marc Feinberg, James Fleming
  • Patent number: 10751170
    Abstract: The present invention provides a modular prosthetic valve device having two or more device modules for percutaneous delivery unassembled at or near the valve implantation site and assembly at least in part using a self-assembly member, and a system and method of folding, delivering and assembling the device. The device modules may include a support structure and a valve module. The valve module has an unassembled, folded delivery configuration, and an unfolded, assembled (via the self-assembly member) working configuration. The valve module may be a single-piece leaflets substructure or a plurality of valve sections. The self-assembly member has a delivery configuration and may be reverted to a preset configuration for valve module assembly. The unassembled valve module may be rolled along its circumferential axis towards its height to a folded diameter equivalent to one rolled leaflet, providing a percutaneous valve device having a smaller delivery diameter than pre-assembled valve devices.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 25, 2020
    Assignee: Valve Medical Ltd.
    Inventors: Yoram Richter, Jacob Richter, Ety Weisz
  • Patent number: 10743992
    Abstract: A prosthetic heart valve having an inflow end and an outflow end includes a stent having a collapsed condition, an expanded condition, and a plurality of cells arranged in circumferential rows. The stent may include one or more securement features. One securement feature may be an anchor arm having a body portion and a free end extending from the body portion, the body portion being coupled to a perimeter of one of the plurality of cells, with the free end extending toward the inflow end in an expanded condition of the anchor arm. Another securement feature may include a flange formed of a braided mesh and having a body portion coupled to the stent and a flared portion adjacent the inflow end of the prosthetic heart valve. A valve assembly is disposed within the stent and has a plurality of leaflets.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: August 18, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Mark Krans, Theodore Paul Dale, Andrea N. Para, Mathias Charles Glimsdale, Thomas M. Benson, Peter N. Braido
  • Patent number: 10744015
    Abstract: An endoprosthesis constraining sleeve includes a single sheet of material forming at least two folds, and a common bond line constraining the single sheet of material to maintain the at least two folds and to form at least two discrete lumens. A first lumen of the at least two lumens is configured to receive a constrained endoprosthesis therein. A second lumen of the at least two lumens is configured to receive a control feature therethrough.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: August 18, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Karl R. Chung, Susan J. Rudes
  • Patent number: 10736738
    Abstract: A prosthetic heart valve including a stent frame and a valve structure. The valve structure is disposed within a lumen of the stent frame. The stent frame is configured to self-expand from a compressed condition for transluminal delivery. The stent frame has a lattice structure forming a tubular shape defining a circumference and a plurality of closed cells arranged to define a band exhibiting a variable radial stiffness. The prosthesis can be deployed such that the band applies a minimal force on to anatomical locations relating to the heart's conductive pathways. A region of the band otherwise having low radial stiffness is located at or over a conductive pathway upon final implant.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: August 11, 2020
    Assignee: Medtronic Vascular Galway
    Inventors: Rodney Bell, Declan Costello
  • Patent number: 10729811
    Abstract: Methods for inhibiting stenosis, obstruction and/or calcification of a heart valve following implantation in a vessel having a wall are disclosed. In one aspect the method includes providing a bioprosthetic heart valve mounted on an elastical stent; treating the bioprosthetic heart valve with a tissue fixative; coating the stent and the bioprosthetic valve with a coating composition including one or more therapeutic agents; implanting the bioprosthetic valve into the vessel in a diseased natural valve site; eluting the coating composition from the bioprosthetic valve; and inhibiting stenosis, obstruction and/or calcification of the bioprosthetic heart valve by preventing the attachment of stem cells to the bioprosthetic heart valve, the stem cells circulating external and proximate to the bioprosthetic heart valve by activating nitric oxide production (i) in the circulating stem cells, (ii) in an endothelial cell lining covering the bioprosthetic heart valve tissue, (iii) or both.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 4, 2020
    Assignee: CONCIEVALVE, LLC
    Inventor: Nalini M. Rajamannan
  • Patent number: 10722349
    Abstract: A prosthetic valve including an inner frame, an outer frame, and a connection assembly interconnecting the frames. The inner frame defines an interior volume for receiving a valve structure within the interior volume. The outer frame surrounds the inner frame. The inner and outer frames are each configured to be transitionable between compressed and expanded conditions. The prosthetic heart valve provides a initial deployed state in which the inner and outer frames are in the expanded condition, and a radial shape of the outer frame is adjustable via the connection assembly to a final deployed state. A shape of the outer frame can be adjusted upon implant to enable radial anchoring at the native annulus, while addressing possible non-uniformities of the native annulus and possible anatomical concerns such as LVOT obstruction.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 28, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Frank White, Paraic Frisby, James R. Keogh
  • Patent number: 10722365
    Abstract: Valve devices, methods of making valve devices, and methods of treating various venous-related conditions, disorders and/or diseases are described. In one embodiment, a valve device includes an expandable support frame and a bioprosthetic valve attached to the support frame. The bioprosthetic valve comprises a leaflet and a contiguous wall portion harvested from a multi-leaflet xenogeneic valve. The contiguous wall portion includes the attachment region where the leaflets attaches to the vessel wall and, in some embodiments, includes the natural margins of attachment between the leaflet and vessel wall.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: July 28, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Sean Chambers, Ram Paul, Norman Jaffe
  • Patent number: 10716673
    Abstract: A method of forming an implant having a porous tissue ingrowth structure and a bearing support structure. The method includes depositing a first layer of a metal powder onto a substrate, scanning a laser beam over the powder so as to sinter the metal powder at predetermined locations, depositing at least one layer of the metal powder onto the first layer and repeating the scanning of the laser beam.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: July 21, 2020
    Assignees: Howmedica Osteonics Corp., The University Of Liverpool
    Inventors: Eric Jones, Christopher J. Sutcliffe, Robin Stamp
  • Patent number: 10702379
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 7, 2020
    Assignee: Medtronic CV Luxembourg S.a.r.l.
    Inventors: Kshitija Garde, Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 10695040
    Abstract: A self-closing device for implantation within a patient's body includes base material including an inner surface area for securing the base material to a tissue structure, and a plurality of support elements surrounding or embedded in the base material. The support elements are separable laterally within a plane of the base material to accommodate creating an opening through the base material for receiving one or more instruments through the base material, and biased to return laterally towards a relaxed state for self-closing the opening after removing the one or more instruments. The device may be provided as a patch or integrally attached to a tubular graft or in various shapes.
    Type: Grant
    Filed: December 23, 2017
    Date of Patent: June 30, 2020
    Assignee: SOLINAS MEDICAL INC.
    Inventors: James Hong, Michael J. Drews