Abstract: Provided are a metal chalcogenide thin film and a method and device for manufacturing the same. The metal chalcogenide thin film includes a transition metal element and a chalcogen element, and at least one of the transition metal element and the chalcogen element having a composition gradient along the surface of the metal chalcogenide thin film, the composition gradient being an in-plane composition gradient. The metal chalcogenide thin film may be prepared by using a manufacturing method including providing a transition metal precursor and a chalcogen precursor on a substrate by using a confined reaction space in such a manner that at least one of the transition metal precursor and the chalcogen precursor forms a concentration gradient according to a position on the surface of the substrate; and heat-treating the substrate.
Type:
Grant
Filed:
April 29, 2020
Date of Patent:
July 25, 2023
Assignees:
SAMSUNG ELECTRONICS CO., LTD., RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
Inventors:
Kyung-Eun Byun, Hyoungsub Kim, Taejin Park, Hyeonjin Shin, Hoijoon Kim, Wonsik Ahn, Mirine Leem
Abstract: The present invention relates to material utilized for heavy construction machinery, vehicle frames, reinforcing members, and the like, and more specifically to a high-strength steel sheet having excellent impact resistance and a method for manufacturing same.
Abstract: Disclosed herein is a sliding member having an alloy overlay layer that comes into sliding contact with a counterpart member thereof and has improved fatigue resistance. The sliding member comprises a base material layer and an alloy overlay layer formed on the base material layer, in which the alloy overlay layer has a soft metal phase made of tin and precipitated in a metallic matrix phase made of aluminum, and when an average aspect ratio of the soft metal phase is defined as A, and its standard deviation is defined as A?, A+A? is 3.0 or less. In this case, the soft metal phase has a shape close to a sphere without elongating in a certain direction.
Abstract: An aluminum alloy brazing sheet may include a sacrificial material having a function of a brazing material on at least one surface of a core material, wherein the sacrificial material has a composition containing: in a mass %, 2% to 5% of Si; 3% to 5% of Zn; and an Al balance with inevitable impurities the core material is made of an Al—Mn-based alloy, an in the core material before brazing, Al—Mn based secondary particles having an equivalent circle diameter of 100 to 400 nm are distributed with a number density of 0.3 to 5 particles/?m2.
Abstract: A multi-layered coating system for a substrate and a method for preparing the multi-layered coating system are provided herein. The multi-layered coating system includes a substrate, a metallic layer disposed adjacent to at least a portion of the substrate, an adhesion layer disposed adjacent to at least a portion of the metallic layer, and a protective coating layer disposed adjacent to at least a portion of the adhesion layer. The metallic layer includes a metal, an oxide of the metal, or a combination thereof. The adhesion layer includes a silicate and latex.
Type:
Grant
Filed:
June 23, 2021
Date of Patent:
July 11, 2023
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Guy D. Larouche, Margaret Ann Mcfarland
Abstract: The present invention relates to a tantalum carbide coated carbon material, and more particularly, to a tantalum carbide coated carbon material including a tantalum carbide film having a surface contact angle of 50° or more and low surface energy.
Abstract: Embodiments of a article including include a substrate and a patterned coating are provided. In one or more embodiments, when a strain is applied to the article, the article exhibits a failure strain of 0.5% or greater. Patterned coating may include a particulate coating or may include a discontinuous coating. The patterned coating of some embodiments may cover about 20% to about 75% of the surface area of the substrate. Methods for forming such articles are also provided.
Type:
Grant
Filed:
January 25, 2021
Date of Patent:
July 11, 2023
Assignee:
Corning Incorporated
Inventors:
Shandon Dee Hart, Guangli Hu, Nicholas James Smith
Abstract: To provide a sliding member, such as a piston ring for an internal combustion engine, having low friction and excellent toughness. The above-described problem is solved by a sliding member (10) such as a piston ring coated with a Cr—B—Ti—V—(Mn, Mo)—N-based alloy film (2) on a sliding surface (11) thereof, and configured so that the alloy film (2) contains one or both of Mn and Mo and has a total content of the Mn and the Mo within a range of 2 mass % or less. Preferably, a B content is within a range of 0.1 mass % to 1.5 mass %, inclusive, a V content is within a range of 0.05 mass % to 1 mass %, inclusive, and a Ti content is within a range of 0.05 mass % to 1.5 mass %, inclusive.
Abstract: The present invention is in the field of processes for producing flexible organic-inorganic laminates as well as barrier films comprising flexible organic-inorganic laminates by atomic layer deposition. In particular the present invention relates to a process for producing a laminate comprising more than once the sequence comprising: (a) depositing an inorganic layer by performing 4 to 150 cycles of an atomic layer deposition process, and (b) depositing an organic layer comprising sulfur by a molecular layer deposition process.
Type:
Grant
Filed:
May 7, 2015
Date of Patent:
June 27, 2023
Assignee:
BASF COATINGS GMBH
Inventors:
Maraike Ahlf, Felix Eickemeyer, Daniel Loeffler, Stephan Klotz, Juergen Frank, Myung Mo Sung, Kwan Hyuck Yoon
Abstract: A watch outer packaging component is a watch outer packaging component formed of austenitized ferritic stainless steel including a base formed of a ferrite phase and a surfacing layer formed of an austenitized phase in which the ferrite phase is austenitized, the watch outer packaging component abutting on a sealing member that partitions between a space inside a watch and a space outside the watch, wherein the surfacing layer includes an outer surfacing layer provided at an outer surface facing the space outside the watch, and an inner surfacing layer provided at an inner surface facing the space inside the watch, and the inner surfacing layer is thinner in thickness than the outer surfacing layer.
Abstract: An ultra-fine nanocrystalline diamond precision cutting tool and a manufacturing method therefor. A diamond cutter is made of a thick self-supporting film of ultra-fine nanocrystalline diamond, the thick film having a thickness of 100-3000 microns, where 1 nanometer?diamond grain size?20 nanometers. In the manufacturing method, the growth of ultra-fine nanocrystalline diamond on a silicon substrate is accomplished by means of two steps of direct current hot cathode glow discharge chemical vapor deposition and hot filament chemical vapor deposition, then the silicon substrate is separated from the diamond to obtain a thick self-supporting film of ultra-fine nanocrystalline diamond, the thick self-supporting film of ultra-fine nanocrystalline diamond is laser cut and then welded to a cutter body, and then by means of edging, rough grinding and fine grinding, an ultra-fine nanocrystalline diamond precision cutting tool is obtained.
Type:
Grant
Filed:
April 18, 2018
Date of Patent:
June 27, 2023
Assignee:
NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING. CHINESE ACADEMY OF SCIENCES
Inventors:
Nan Jiang, He Li, Bo Wang, Jian Yi, Yang Cao
Abstract: A steel sheet coated with a coating comprising from 10 to 40% of nickel, the balance being zinc, such steel sheet having a microstructure comprising from 1 to 50% of residual austenite, from 1 to 60% of martensite and optionally at least one element chosen from: bainite, ferrite, cementite and pearlite, and the following chemical composition in weight: 0.10<C<0.50%, 1.0<Mn<5.0%, 0.7<Si<3.0%, 0.05<Al<1.0%, 0.75<(Si+Al)<3.0% and on a purely optional basis, one or more elements such as Nb?0.5%, B?0.005%, Cr?1.0%, Mo?0.50%, Ni?1.0%, Ti?0.5%, the remainder of the composition making up of iron and inevitable impurities resulting from the elaboration.
Abstract: Provided is a surface-treated copper foil excellent in laser processability. The surface-treated copper foil includes a roughened surface formed by subjecting a surface to a roughening treatment, in which when measured using a three-dimensional roughness meter, the roughened surface has a surface skewness Ssk within a range of from ?0.300 to less than 0 and an arithmetic mean summit curvature Ssc within a range of from 0.0220 nm?1 to less than 0.0300 nm?1.
Type:
Grant
Filed:
March 24, 2021
Date of Patent:
June 20, 2023
Assignees:
Furukawa Electric Co., Ltd., Murata Manufacturing Co., Ltd.
Abstract: A canted coil spring includes a core wire 10 formed of steel having a pearlite structure; and a copper plating layer 20 formed of copper or a copper alloy and covering an outer circumferential surface 11 of the core wire 10. The steel contains 0.5 mass % or more and 1.0 mass % or less carbon, 0.1 mass % or more and 2.5 mass % or less silicon, and 0.3 mass % or more and 0.9 mass % or less manganese, with the balance being iron and inevitable impurities. The copper plating layer 20 has a crystallite size of 220±50 ?.
Abstract: A watch component comprising an austenitic ferritic stainless steel. The austenitic ferritic stainless steel includes a base portion composed of a ferrite phase, a surface layer composed of an austenitic phase, and a mixed layer formed between the base portion and the surface layer, wherein the mixed layer is composed of the ferrite phase and the austenitic phase. The surface layer contains 1.0 to 1.6 mass % of nitrogen, in which the surface layer has, at a surface of the surface layer, an oxide film having a thickness of 2.5 nm or greater, as calculated in terms of oxygen profiles in AES analysis.
Abstract: An exterior material of a home appliance having improved corrosion resistance and fingerprint resistance by changing a treatment method of a surface of the exterior material, and the home appliance including the same, and a manufacturing method therefor are provided. The method of manufacturing the exterior material of the home appliance, the method including applying a diamond like carbon (DLC) coating on the substrate to form a DLC coating layer; and conducting anti-fingerprint coating to form the anti-fingerprint coating on the DLC coating layer.
Type:
Grant
Filed:
April 19, 2018
Date of Patent:
May 23, 2023
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Hyun Seok Shin, Kwang Joo Kim, Young Deog Koh, Jin O Kwak, Da Hyun Byeoun, Young Min Yoo, Kyung Hwan Lee, Min Kyung Lee
Abstract: This copper alloy for electronic or electric devices includes: Mg: 0.15 mass % or greater and less than 0.35 mass %; and P: 0.0005 mass % or greater and less than 0.01 mass %, with a remainder being Cu and unavoidable impurities, wherein an amount of Mg [Mg] and an amount of P [P] in terms of mass ratio satisfy [Mg]+20×[P]<0.5, and 0.20<(NFJ2/(1?NFJ3))0.5?0.45 is satisfied in a case where a proportion of J3, in which all three grain boundaries constituting a grain boundary triple junction are special grain boundaries, to total grain boundary triple junctions is represented by NFJ3, and a proportion of J2, in which two grain boundaries constituting a grain boundary triple junction are special grain boundaries and one grain boundary is a random grain boundary, to the total grain boundary triple junctions is represented by NFJ2.
Abstract: The disclosure provides for anti-scale deposition coatings for use on surface, such as on oilfield parts. The coating includes a first, sublayer of a metal, ceramic, or metal-ceramic composite, which is characterized in having a hardness in excess of 35 HRC. The coating includes a second, top layer over the first layer, that is a polymer. A surface of the first layer may be conditioned to have a roughened or patterned topology for receipt of and adherence with the at least one top layer. The first layer may provide the coating with hardness, and the at least one top layer may provide the coating with low-friction and anti-scale properties.
Abstract: A substrate is coated with a multi-layer coating, comprising in order: (i) a first functional layer comprising ta-C, (ii) a second functional layer comprising ta-C, (iii) (a) a third functional layer comprising ta-C and a first intermediate layer comprising a carbide of a first element, or (b) a first intermediate layer comprising a carbide of a first element, and a second intermediate layer comprising the first element, wherein the ta-C has a hydrogen content less than 10% and an sp2 content less than 30%; wherein (i) the Young's modulus or (ii) the hardness or (iii) both the Young's modulus and the hardness independently stay the same or increase from layer to layer in (iii) (a) from the first intermediate layer to the first functional layer, or in (iii) (b) from the second intermediate layer to the first functional layer.
Type:
Grant
Filed:
November 7, 2019
Date of Patent:
May 9, 2023
Assignee:
NANOFILM TECHNOLOGIES INTERNATIONAL LIMITED
Abstract: A watch component includes an austenized ferritic stainless steel including a base including a ferrite phase, a surface layer formed on a surface of the base, the surface layer including an austenized phase, and a mixed layer formed between the base and the surface layer, the mixed layer being a layer in which the ferrite phase and the austenized phase are mixed. In a cross section taken along a depth direction from the surface, a thickness of the mixed layer is 45% or less of a thickness of the surface layer.