Abstract: A coated tool may include a base member including a first surface, and a coating layer located on the first surface. On the first surface, scattered island portions may include 70 area % or more of a binder phase and have an equivalent circle diameter of 10 ?m or more. The coating layer may include a first layer including a titanium compound and located on the first surface, and a second layer including aluminum oxide and located on and in contact with the first layer. The coating layer may include a plurality of voids. An average value of widths of the voids in the direction along the boundary may be less than an average value of distances between the voids adjacent to each other.
Abstract: A hot stamped body comprising a steel base material and an Al—Zn—Mg-based plating layer formed on a surface of the steel base material, wherein the plating layer has a predetermined chemical composition, the plating layer comprises an interfacial layer positioned at an interface with the steel base material and containing Fe and Al and a main layer positioned on the interfacial layer, the main layer comprises, by area ratio, 10.0 to 90.0% of an Mg—Zn containing phase, 5.0 to less than 30.0% of an Fe—Al containing phase, and 2.0 to 25.0% of an Al—Si containing oxide phase, the Mg—Zn containing phase comprises at least one selected from the group consisting of an MgZn phase, Mg2Zn3 phase, and MgZn2 phase, and the Fe—Al containing phase comprises at least one of an FeAl phase and Fe—Al—Zn phase.
Type:
Grant
Filed:
February 27, 2020
Date of Patent:
May 28, 2024
Assignee:
NIPPON STEEL CORPORATION
Inventors:
Takuya Mitsunobu, Takehiro Takahashi, Jun Maki
Abstract: The present disclosure relates to a tantalum carbide-coated carbon material and a method for manufacturing the same, and an aspect of the present disclosure provides a tantalum carbide-coated carbon material including: a carbon substrate; and a tantalum carbide coating layer formed on the carbon substrate by a CVD method, wherein microcracks included in the tantalum carbide coating layer have a maximum width of 1.5 ?m to 2.6 ?m.
Abstract: A thermal dual-barrier coating system is disclosed which includes a first thermal barrier layer having a first thermal conductivity, one or more composite structures vertically disposed adjacent the first thermal barrier layer, each of the one or more composite structures includes an ultra-thin disordered semi-continuous metallic film and a layer of a second thermal barrier layer.
Type:
Grant
Filed:
January 11, 2022
Date of Patent:
April 30, 2024
Assignee:
Purdue Research Foundation
Inventors:
Zubin Jacob, Xueji Wang, Ali Jishi, Avra Sankar Bandyopadhyay
Abstract: What is provided is a new and improved metal-carbon fiber reinforced resin material composite in which the galvanic corrosion of dissimilar materials of a metal member is suppressed and electrodeposition coatability is excellent and a method for manufacturing the metal-carbon fiber reinforced resin material composite. A metal-carbon fiber reinforced resin material composite according to the present invention has a metal member, a resin coating layer disposed on at least a part of a surface of the metal member, and a carbon fiber reinforced resin material containing a matrix resin and a carbon fiber material present in the matrix resin, the resin coating layer contains any one or more kinds selected from the group consisting of metal particles, intermetallic compound particles, conductive oxide particles, and conductive non-oxide ceramic particles as conductive particles and further contains a binder resin, and the conductive particles have a powder resistivity at 23° C. to 27° C. of 7.
Abstract: A composite substrate includes, in this order: a ceramic plate; a metal layer containing at least one selected from the group consisting of aluminum and an aluminum alloy; and a thermal sprayed layer containing at least one selected from the group consisting of copper and a copper alloy, and an intermetallic compound containing copper and aluminum as constituent elements is scattered between the metal layer and the thermal sprayed layer.
Abstract: A coated tool may include a base member including a first surface, and a coating layer located at least on the first surface of the base member. The coating layer may include a first layer located on the first surface and including a titanium compound, and a second layer contactedly located on the first layer and including aluminum oxide. The second layer may include an orientation coefficient Tc(0012) of 3.0 or more by X-ray diffraction analysis. The coating layer may include a plurality of voids located in a direction along an interface between the first layer and the second layer, and an average value of widths of the voids in a direction along the interface is smaller than an average value of distances between the voids adjacent to each other in a cross section orthogonal to the first surface.
Abstract: Provided is a coated cutting tool, which includes a hard coating film containing a layer (b) formed of a nitride or a carbonitride, a layer (c) which is a layered coating film formed by alternately layering a nitride or carbonitride layer (c1) that contains 55 atom % or more of Al, Cr having a second highest content percentage, and at least B and a nitride or carbonitride layer (c2) that contains 55 atom % or more of Al and Ti having a second highest content percentage, each layer having a film thickness of 50 nm or less. A peak intensity Ih ascribable to a hcp (010) plane of AlN in the layer (c) and the total peak intensity Is ascribable to a plurality of predetermined crystal phases satisfy a relationship of Ih×100/Is?15.
Abstract: A metallic coating includes a first metal, a second metal, phosphorous, and graphene nanoparticles. The first metal may be nickel and the second metal may be a refractory metal, such as tungsten, rhenium, molybdenum, niobium, tantalum, or mixtures thereof. The metallic coating may have, by weight, 1.0% to 40.0% of refractory metal, 1.0% to 20.0% of phosphorous, 0.01% to 5.0% of the graphene nanoplatelets, and a remainder of the nickel.
Abstract: Provided is a surface-treated copper foil in which in order to avoid failures of electronic parts by corrosion, a high bond strength between an electrolytic copper foil and a resin base material can be maintained even when the surface-treated copper foil is exposed to corrosive gases and microparticles, and a method for manufacturing the same. The surface-treated copper foil of the present invention comprises an electrolytic copper foil, a roughened layer covering at least one surface side of the electrolytic copper foil, and a rust preventive layer further covering the roughened layer, wherein the rust preventive layer is at least one surface of the surface-treated copper foil; the rust preventive layer comprises at least a nickel layer; and the thickness of the nickel layer is 0.8 to 4.4 g/m2 in terms of mass per unit area of nickel; and the noncontact roughness Spd of the rust preventive layer is 1.4 to 2.6 peaks/?m2 and the surface roughness RzJIS of the rust preventive layer is 1.0 to 2.5 ?m.
Abstract: A display device includes a ferromagnetic layer including a ferromagnetic material, a cover window disposed above the ferromagnetic layer, and a display panel disposed between the ferromagnetic layer and the cover window, where the display panel includes a curved area which is bent.
Abstract: The present invention is a laminate including a base sheet and a metal particle-containing layer laminated on the base sheet, and including metal particles. The base sheet has a contact surface in contact with the metal particle-containing layer, and a Young's modulus of the base sheet at 23° C., which is obtained by measuring the contact surface using a nano-indentation method, is 0.01 to 10 GPa.
Abstract: [Object] To provide a Cu—Ti-based copper alloy sheet material having a strength, an electrical conductivity, bending workability, and a stress relaxation property all at high levels in a good balance, and also having a reduced density (specific gravity). [Means for Solution] A copper alloy sheet material composed of, in mass %, Ti: 1.0 to 5.0%, Al: 0.5 to 3.0%, Ag: 0 to 0.3%, B: 0 to 0.3%, Be: 0 to 0.15%, Co: 0 to 1.0%, Cr: 0 to 1.0%, Fe: 0 to 1.0%, Mg: 0 to 0.5%, Mn: 0 to 1.5%, Nb: 0 to 0.5%, Ni: 0 to 1.0%, P: 0 to 0.2%, Si: 0 to 0.5%, Sn: 0 to 1.5%, V: 0 to 1.0%, Zn: 0 to 2.0%, Zr: 0 to 1.0%, S: 0 to 0.2%, rare earth elements: 0 to 3.0%, and the balance substantially being Cu, wherein a maximum width of a grain boundary reaction type precipitate existing region is 1000 nm or less, a KAM value when a boundary with a crystal orientation difference of 15° or more measured by EBSD (step size: 0.1 ?m) is rewarded as a crystal grain boundary is 3.
Abstract: A steel sheet for can making and methods for manufacturing the same. The steel sheet includes, in order from a steel sheet side, an iron-nickel diffusion layer, a metallic chromium layer, and a chromium oxide layer. The iron-nickel diffusion layer has a nickel coating weight of 50 mg/m2 to 500 mg/m2 per surface of the steel sheet and a thickness of 0.060 ?m to 0.500 ?m per surface of the steel sheet. The metallic chromium layer includes a flat-like metallic chromium sublayer and a granular metallic chromium sublayer placed on a surface of the flat-like metallic chromium sublayer. The total chromium coating weight of both sublayers per surface of the steel sheet is 60 mg/m2 to 200 mg/m2. The chromium oxide layer has a chromium coating weight 3 mg/m2 to 10 mg/m2 per surface of the steel sheet in terms of metallic chromium.
Abstract: Ceramic and ceramic composite components suitable for high temperature applications and methods of manufacturing such components. The components are formed by a displacive compensation of porosity (DCP) process and are suitable for use at operating temperatures above 600° C., and preferably above 1400° C., and possess superior mechanical properties.
Abstract: Provided are a liquid crystal polymer film (LCP film) and a laminate comprising the same. The LCP film has a first surface and a second surface opposite each other, and the first surface has an arithmetical mean height of a surface (Sa) less than 0.32 ?m. The LCP film with proper Sa is suitable to be stacked with a metal foil, such that a laminate comprising the LCP film can have an advantage of low insertion loss.
Abstract: A high-strength cold-rolled steel sheet having a high yield ratio and excellent stretch flangeability and a method for manufacturing the steel sheet. The high-strength cold-rolled steel sheet has a chemical composition including, by mass %, C: 0.10 to 0.30%, Si: 0.50 to 2.00%, Mn: 2.5 to 4.0%, P: 0.050% or less, S: 0.020% or less, Al: 0.10% or less, N: 0.01% or less, Ti: 0.100% or less, and B: 0.0003 to 0.0030%, with the balance being Fe and incidental impurities. N and Ti satisfy a specified formula, and the total area fraction of martensite and bainite is 95% or more. The number density of bainite grains having an area of 3 ?m2 or more and a carbon concentration of less than 0.7C is 1200 grains/mm2 or less.
Abstract: There is provided a composite plating material and a related technique thereof, the composite plating material including: a base material, and a composite plating layer on the base material, the composite plating layer comprising a composite material containing carbon particles and Sb in an Ag layer, with a carbon content of 6.0 mass % or more and a Sb content of 0.5 mass % or more.
Abstract: The present invention relates to a 3D-printed cobalt-based alloy product comprising carbon, tungsten and chromium with very good mechanical and thermal properties as well as a method of preparing the 3D-printed product and a powder alloy. The alloy has a high carbon content leading to high carbide content but small and evenly distributed carbides. A method facilitating 3D printing of high carbide content alloys such as the present alloy is also disclosed.
Abstract: There are provided a composite plated product wherein a composite plating film of a composite material containing carbon particles in a silver layer is formed on a base material and wherein the amount of the carbon particles dropped out of the composite plating film is small, and a method for producing the same. After a composite plating film of a composite material containing carbon particles in a silver layer is formed on a base material (of preferably copper or a copper alloy) by electroplating using a silver-plating solution to which the carbon particles are added, a treatment for removing part of the carbon particles on the surface thereof is carried out.