Patents Examined by Shahdeep Mohammed
  • Patent number: 9987096
    Abstract: A method and apparatus for radially compressing bodily tissue and performing medical procedures from a selected one of a plurality of circumferential positions and angles, a selected one of a plurality of different elevations and elevational angles. Some embodiments include a tissue-compression fixture having members that are configured to be moved to radially compress bodily tissue such that each of a plurality of areas of biological tissue are exposed between the plurality of members, and wherein the fixture is compatible with use in an MRI machine in operation; an actuator having a receiver for a medical-procedure probe; and a computer system operatively coupled to the actuator to move the probe. The computer receives user commands, and based on the commands, moves the actuator to a selected one of a plurality of different positions around the tissue-compression fixture and then extends the probe into the patient.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 5, 2018
    Assignee: MRI Robotics LLC
    Inventors: Blake Timothy Larson, Arthur Guy Erdman
  • Patent number: 9955947
    Abstract: A device and method for shielding an ultrasound probe are provided. The ultrasound probe includes a handle having an interior chamber with an open front end and a transducer assembly provided in the chamber. The transducer assembly converts acoustic energy received through the open front end to electrical signals. The ultrasound probe further includes a shielding portion provided between the transducer assembly and an exterior of the handle.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Atsushi Morimoto, Scott Kerwin
  • Patent number: 9943667
    Abstract: A guide wire includes an elongated main body possessing flexibility. The main boy is comprised of a first wire having a core member constituted by a metal material, a second wire having a core member arranged on the proximal side of the first wire and constituted by a metal material, and an optically transmissive member arranged between the first wire and the second wire, and connecting the first and second wires to each other and constituted by a substantially transparent tube shaped body. The optically transmissive member exhibits light permeability such that when light is illuminated from one direction of a lateral side thereof, the light is transmissible to the opposite side through the center axis of the main body.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 17, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Tomoji Maruyama
  • Patent number: 9931523
    Abstract: An apparatus for driving and controlling ultrasonic elements includes a computer-based host unit that determines driving characteristics with which to drive the ultrasonic elements; a microprocessor-based controller that receives an output from the host and provides signals representing a frequency and/or an amplitude characteristic; a frequency control circuit receiving the frequency characteristic signal; an amplitude control circuit receiving the amplitude characteristic signal; an RF amplifier acting on an output from the frequency and/or the amplitude control circuits to provide an amplified output signal corresponding to the frequency and/or amplitude characteristic; a coupling circuit that couples the amplified output signal to the ultrasonic elements and provides a forward output signal to a first RF detector circuit and a reverse output signal to a second RF detector circuit; and an analog-to-digital converter that receives an output of the RF detector circuits and provides a corresponding converted
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 3, 2018
    Assignee: Profound Medical, Inc.
    Inventors: Cameron Mahon, Nicolas Yak, Rajiv Chopra, Mathew Asselin, Michael Bronskill
  • Patent number: 9877698
    Abstract: According to one embodiment, there is provided an ultrasonic diagnosis apparatus which generates a plurality of volume data over a predetermined period, executes setting of a position of at least one MPR slice relative to volume data, of the plurality of volume data, which corresponds to a first time phase, and sets positions of MPR slices corresponding to the at least one set MPR slice with respect to remaining volume data, executes segmentations of at least part of the heart into a plurality of segments, executes three-dimensional tracking processing, and optimizes the position of the MPR slice which is set in a predetermined time phase, based on the positions of the plurality of segments, and optimizes positions of the MPR slices set for the remaining volume data in association with the optimization.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: January 30, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventor: Shinichi Hashimoto
  • Patent number: 9867674
    Abstract: A method and apparatus for identifying a member used in a navigation system. The navigation system can determine the identification of an instrument via an input. The input can be substantially automatic when an instrument is introduced into the navigation system field or assembly.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: January 16, 2018
    Assignee: Medtronic Navigation, Inc.
    Inventors: Steve Hartmann, Jason Tipton
  • Patent number: 9844405
    Abstract: Described is an apparatus for locally monitoring nerve activity that may be incorporated into a nerve ablation catheter. Such a catheter is equipped with magnetic sensing for both identifying nerves and assessing the success of the ablation. The catheter is also equipped with an ablation instrument for both stimulating and destroying nerve tissue.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 19, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jan Weber, Torsten Scheuermann, Roger Hastings
  • Patent number: 9839408
    Abstract: Minimally invasive systems and methods are described for measuring pulmonary circulation information from the pulmonary arteries. A transbronchial Doppler ultrasound catheter is advanced through the airways and in the vicinity of the pulmonary artery. Doppler ultrasound energy is sent through the airway wall and across the pulmonary artery to obtain velocity information of blood flowing through the artery. The velocity information is used to compute pulmonary circulation information including but not limited to flowrate.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 12, 2017
    Assignee: PneumRx, Inc.
    Inventors: Edmund J. Roschak, Jeffrey Schwardt, Philip Stephen Levin
  • Patent number: 9823189
    Abstract: In an embodiment of the present disclosure, an optical method for determining morphological parameters and physiological properties of tissue is presented. The method includes using reflectance measurements from a tissue area for a plurality of wavelengths, using a bio-optical model, using radiative transfer modeling and using a non-linear inversion procedure.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 21, 2017
    Assignee: Balter, AS.
    Inventors: Jakob J. Stamnes, Knut Stamnes, Lu Zhao, Boerge Hamre, Gennady Ryzhikov, Marina Biryulina, Endre R. Sommersten, Kristian Pagh Nielsen, Johan E. Moan
  • Patent number: 9808174
    Abstract: Upon detecting a body-motion before starting a main-imaging, a sequence-switching control-unit controls operation so as to switch from a usual-imaging sequence to a body-motion adaptive-sequence corresponding to an imaging-portion of a subject P by referring to a body-motion adaptive-sequence storage-unit. Moreover, upon detecting a body-motion during the main-imaging according to the usual-imaging sequence, the sequence-switching control-unit refers to a collected-data storage-unit, and controls operation so as to perform a retake by switching to the body-motion adaptive-sequence if an already-collected data-volume is less than a predetermined volume. By contrast, if the already-collected data-volume is equal to or more than the predetermined volume at a time of detecting a body-motion during the main-imaging, the sequence-switching control-unit stops the main-imaging, and controls a data-processing unit so as to reconstruct a magnetic resonance image only with collected data.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: November 7, 2017
    Assignee: Toshiba Medical Systems Corporation
    Inventor: Katsutoshi Kokubun
  • Patent number: 9808653
    Abstract: Methods for treating a human patient having a subarachnoid hematoma, such as to prevent cerebral vasospasm or to reduce the severity of cerebral vasospasm in the patient, and associated devices, systems, and methods are disclosed herein. In a particular embodiment, a thrombolytic agent is introduced extravascularly into a subarachnoid region including the hematoma. A headset configured for hands-free delivery of transcranial ultrasound energy is connected to the patient and used to deliver ultrasound energy to the subarachnoid region to enhance the thrombolytic effect of the thrombolytic agent. The type and/or dosage of the thrombolytic agent can be selected based on the enhanced thrombolytic effect. For example, the enhanced thrombolytic effect can allow the therapeutically effective use of less aggressive thrombolytic agents and/or lower dosages of thrombolytic agents. In some cases, this can reduce the clinical probability of additional cerebral hemorrhage.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: November 7, 2017
    Inventor: David W. Newell
  • Patent number: 9804237
    Abstract: A body coil for magnetic resonance imaging includes one or more coil elements incorporated in a shell material. The body coil has a rectangular basic shape. Two opposing edge sections of the body coil may be pivoted along one pivot axis, respectively, relative to a middle section. For this purpose, movement elements that effect pivoting are arranged on an edge section side.
    Type: Grant
    Filed: February 10, 2013
    Date of Patent: October 31, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Daniel Driemel
  • Patent number: 9775539
    Abstract: Implantation imaging techniques are presented herein to provide a surgeon with visual feedback during implantation of an implantable medical device in a recipient. The implantation imaging techniques may include the generation of a magnetic field that induces a voltage at a coil positioned in the recipient. The induced voltage is used to determine the orientation of the coil positioned in the recipient relative to direction of the magnetic field.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: October 3, 2017
    Assignee: Cochlear Limited
    Inventor: Paul Michael Carter
  • Patent number: 9737235
    Abstract: Image data can be obtained with an imaging device. A location of the imaging device relative to a subject can be determined. A location of an instrument can be tracked relative to the subject using two or more tracking systems operating with different tracking modalities. Also, the tracked location of the instrument can be illustrated relative to the image data.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 22, 2017
    Assignee: Medtronic Navigation, Inc.
    Inventor: Steven L. Hartmann
  • Patent number: 9733336
    Abstract: A system for local metal distortion correction for using an accurate electromagnetic tracking system in a medical environment comprises an electromagnetic field generator monitoring a medical device having a suitable sensor coil. A correction function, derived from an error correction tool, is applied to the position and orientation readings of the sensor coil. The error correction tool comprises a number of electromagnetic sensors arranged in a fixed and known geometric configuration and is placed surrounding the site of the medical procedure. Sensor data is displayed on an imaging system. In addition, a distortion mapping can be done utilizing optical sensors for relative positioning readings along with an electromagnetic tracking system sensor.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: August 15, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Eric Shen, Jochen Kruecker
  • Patent number: 9717553
    Abstract: A method, including incorporating a conducting wire into a tubular braid consisting of a multiplicity of supporting wires, and covering the tubular braid with a sheath. The method further includes identifying a location of the conducting wire within the tubular braid and attaching an electrode through the sheath to the conducting wire at the location.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: August 1, 2017
    Assignee: Biosence Webster (Israel) Ltd.
    Inventors: Assaf Govari, Christopher Thomas Beeckler
  • Patent number: 9717478
    Abstract: A method of displaying the influence of an aspect of a model includes acquiring a two-dimensional echocardiogram having a variable intensity; relating the two-dimensional echocardiogram to a plurality of mapping points, the mapping points existing in a three-dimensional model space; determining a degree of influence value for a mapping point; and displaying the mapping point with a visual attribute that corresponds to the determined degree of influence value.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: August 1, 2017
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Anthony D. Hill, D. Curtis Deno, Robert D. Aiken, Hua Zhong
  • Patent number: 9694213
    Abstract: Acoustic coupling systems and methods are disclosed as these can be used for assessment and ablation procedures. An exemplary acoustic assessment system for a catheter has a flexible catheter shaft. At least one acoustic transducer is positioned in the flexible catheter shaft. The at least one acoustic transducer emits a generated acoustic signal for reflection by adjacent tissue. The at least one acoustic transducer receives a reflected acoustic signal from the adjacent tissue and generates electrical signals corresponding to one or more property of the tissue. An output device is electrically connected to the at least one acoustic transducer. The output device receives the electrical signals and generate output for a user for assessing the tissue.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: July 4, 2017
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Troy T. Tegg, Reed R. Heimbecher
  • Patent number: 9681853
    Abstract: The velocity of fluids containing particles that scatter ultrasound can be measured by determining the Doppler shift of the ultrasound scattered by the particles in the fluid. Measuring fluid flow in cylindrical vessels such as blood vessels is an important use of Doppler ultrasound. This invention teaches using various configurations of cylindrical diffraction-grating transducers and cylindrical non-diffraction-grating transducers that suppress the Doppler shift from non-axial components of fluid velocity while being sensitive to the Doppler shift produced by axial velocity components. These configurations thus provide accurate measurement of the net flow down the vessel, even when the fluid flow is curved or not parallel to the vessel wall.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: June 20, 2017
    Assignee: DVX, LLC
    Inventor: David Vilkomerson
  • Patent number: 9675316
    Abstract: Ultrasound diffraction-grating transducers produce beams at an angle to their face, which makes them useful for Doppler measurement of scattering fluids such as blood. The present invention discloses a diffraction-grating transducer, with the capability to focus transmitting or receiving beams to a desired point in space. This focusing capability leads to greater sensitivity when the diffraction-grating transducer is used as a receiver, and greater concentration of ultrasound energy when used as a transmitter. The focusing is achieved by using curved elements instead of the straight ones in conventional diffraction-grating transducers, and by using non-uniform spacing among these elements rather than the uniform spacing of conventional diffraction-grating transducers. Methods of computing the proper curvature of the elements and their spacing for a desired focal point in space are provided.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: June 13, 2017
    Assignee: DVX, LLC
    Inventor: David Vilkomerson