Patents Examined by Shahdeep Mohammed
  • Patent number: 11109766
    Abstract: This disclosure provides systems and methods for measuring fluid flow in a vasculature system of a patient. Some systems may include an injection system configured to inject a bolus of fluid into a vessel of a patient. Some systems may include a measurement engine configured to monitor the bolus of fluid in the vessel using measurement data generated by an intravascular measuring device. The measurement engine may determine a travel distance of the bolus of fluid and an elapsed time during which the bolus of fluid traversed the travel distance based on the measurement data. A fluid flow rate (e.g., velocity, volumetric flow) of the vessel may be calculated using the travel distance and the elapsed time.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: September 7, 2021
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert F. Wilson, Edward R. Miller, Sidney Donald Nystrom, Kendall R. Waters
  • Patent number: 11109838
    Abstract: A catheter-based imaging system comprises a catheter having a telescoping proximal end, a distal end having a distal sheath and a distal lumen, a working lumen, and an ultrasonic imaging core. The ultrasonic imaging core is arranged for rotation and linear translation. The system further includes a patient interface module including a catheter interface, a rotational motion control system that imparts controlled rotation to the ultrasonic imaging core, a linear translation control system that imparts controlled linear translation to the ultrasonic imaging core, and an ultrasonic energy generator and receiver coupled to the ultrasonic imaging core. The system further comprises an image generator coupled to the ultrasonic energy receiver that generates an image.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 7, 2021
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Kendall R. Waters, Stephanie J. Buech, Robert Zelenka
  • Patent number: 11103307
    Abstract: A system and method enabling the receipt of image data of a patient, identification of one or more locations within the image data depicting symptoms of COPD, analyzing airways and vasculature proximate the identified locations; planning a pathway to the one or more locations, navigating an extended working channel to one of the locations, positioning a microwave ablation catheter proximate the location, and energizing the microwave ablation catheter to treat the locations depicting symptoms of COPD.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 31, 2021
    Assignee: Covidien LP
    Inventors: Joseph D. Brannan, Kathy E. Rooks, Giordana M. Belenchia, Kurt R. Smith
  • Patent number: 11096671
    Abstract: Sparkle in color flow imaging is detected. Color flow data is estimated with different pulse repetition frequency (PRF). By correlating the color flow data estimated with different PRFs, sparkle is identified. Color flow images may be filtered to reduce motion while maintaining the sparkle region (e.g., kidney stone imaging) or reduce the sparkle region while maintaining motion (e.g., remove sparkle as system noise).
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 24, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Chi Hyung Seo, King Yuen Wong
  • Patent number: 11071520
    Abstract: This application presents a system and related methods that analyze a volume of tissue using ultrasound waveform tomography imaging. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, the system can reconstruct the sound speed distributions of a volume of tissue, such as breast tissue, of varying densities with different types of lesions. By allowing sound speed to have an imaginary component that characterizes sound attenuation, the system can classify the different types of lesions with a fine granularity.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: July 27, 2021
    Assignee: Delphinus Medical Technologies, Inc.
    Inventors: Gursharan Singh Sandhu, Nebojsa Duric, Cuiping Li, Olivier Roy, Erik West
  • Patent number: 11064899
    Abstract: Apparatus and techniques are described herein for nuclear magnetic resonance (MR) projection imaging. Such projection imaging may be used for generating four-dimensional (4D) imaging information representative of a physiologic cycle of a subject, such as including generating two or more two-dimensional (2D) images, the 2D images comprising projection images representative of different projection angles, and the 2D images generated using imaging information obtained via nuclear magnetic resonance (MR) imaging, assigning the particular 2D images to bins at least in part using information indicative of temporal positions within the physiologic cycle corresponding to the particular 2D images, constructing three-dimensional (3D) images using the binned 2D images, and constructing the 4D imaging information, comprising aggregating the 3D images.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: July 20, 2021
    Assignee: Elekta, Inc.
    Inventors: Martin Emile Lachaine, Tony Falco
  • Patent number: 11064972
    Abstract: A method for generating an ultrasound image includes receiving a sequence of intravascular ultrasound (IVUS) data obtained as an IVUS imager moves through a body lumen; identifying at least one bifurcation of the body lumen from the sequence of IVUS data; determining a bifurcation angle between two branches of the body lumen; and displaying a longitudinal view of the body lumen using the IVUS data and incorporating the bifurcation angle to angularly align portions of the longitudinal view corresponding to the two portions of the body lumen.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 20, 2021
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Simone Balocco, Marina Alberti, Carlo Gatta, Francesco Ciompi, Oriol Pujol, Xavier Carrillo, Josepa Mauri Ferre, Oriol Rodriguez, Eduard Fernandez-Nofrerias, Petia Radeva
  • Patent number: 11058374
    Abstract: The present invention proposes a radiation detector including a housing, a radiation detection panel accommodated in the housing and converting radiation incident from the outside of the housing into an electric signal, a printed circuit board electrically connected to the radiation detection panel and an intermediate plate that is disposed between the radiation detection panel and the printed circuit board, supports the radiation detection panel, and is electrically connected to the ground line of the printed circuit board, wherein the intermediate plate is transmissive to the radiation.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 13, 2021
    Inventors: Seung Zoo Han, Jin Hyun Choi, Choul Woo Shin, Jung Seok Kim, Young Jong Oh, Jae Dong Lee
  • Patent number: 11051877
    Abstract: Medical devices for diagnosis or treatment of tissue in a body. Representative devices include an elongate shaft having a proximal portion and a distal portion configured for movement relative to the proximal portion. A flexible member having a predetermined stiffness is disposed between the proximal and distal portions. One or more coils and an electrically passive element are disposed within the shaft with either the coils or element configured for movement with the distal portion. The element comprises a material effecting an electrical characteristic of the coils. Movement of the distal portion in response to its contact with the tissue and relative movement of the coils and element causes a change in the electrical characteristic in at least one of the coils indicative of at least a contact force magnitude between the distal portion and the tissue. Several embodiments allow determination of both force magnitude and force vector direction.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: July 6, 2021
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: John W. Sliwa, Alon Izmirli, Zhenyi Ma, Troy T. Tegg
  • Patent number: 11026776
    Abstract: Whether a vein has a stenosis may be determined using duplex ultrasound (DUS). A method of diagnosing stenosis includes: identifying a patient exhibiting at least one of a group of symptoms in at least one limb consisting of: pain, discomfort, swelling and venous stasis skin changes including ulceration; using duplex ultrasound to measure a cross-sectional area of a vein; and, if the cross-sectional area is less than or equal to 50% of a predetermined anatomical minimum for the vein, diagnosing the vein as stenotic. A device for diagnosing stenosis may include: a duplex ultrasound; a display; and a processor configured to show on the display a cross-sectional area measurement of a vein. Stenosis may be treated by inserting a stent in the vein. The predetermined anatomical minimum for the vein is a predetermined calculated valve based on physical principles. It is not a measured value from the patient, or any patient, or a population of patients.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: June 8, 2021
    Inventor: Seshadri Raju
  • Patent number: 11013426
    Abstract: Many factors contribute to dogs' superior olfactory capabilities as compared to humans. Studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. Since sedated dogs cannot sniff, the present application illustrates the cognitive-level linking neural substrate using fMRI of conscious dogs. The head motion of the canine is accounted for by behavioral training and optical motion tracking. The olfactory bulb is commonly activated in both awake and anesthetized dogs, while parietal and frontal structures are activated only in the former and subcortical structures only in the latter. Comparison of low and high odor intensity shows differences in both the strength and spatial extent of activation in higher cognitive structures. Unlike humans, neural structures even at the top of the cognitive hierarchy are modulated by odor concentration in dogs.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: May 25, 2021
    Assignee: Auburn University
    Inventors: Gopikrishna Deshpande, Paul Waggoner, Vitaly Vodyanoy, Hao Jia, Oleg Pustovyy, Thomas Denney, Ed Morrison, Ronald Beyers
  • Patent number: 11000264
    Abstract: The present invention relates to operating a biopsy unit. In order to provide an enhanced and facilitated way of controlling a biopsy unit, a control device (10) for controlling a biopsy unit is provided that comprises a support structure (12) with a housing (14), and a user interface unit (16) with a plurality of control elements (18). The control elements are configured to control the movement of a biopsy needle device along at least three moving direction lines. At least two of the moving direction lines are aligned to axes of a Cartesian coordinate system (20) and one moving direction line is aligned to a needle axis direction (22) of an elongated needle device of the biopsy unit, the needle axis direction being inclined to at least one of the axes of the Cartesian coordinate system. For each moving direction line, the housing is provided with a surface portion (24, 26, 28) that is aligned with a respective one of the moving direction lines.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: May 11, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Anders Rickard Gunee, Per Mattias Myrman
  • Patent number: 10993694
    Abstract: The present invention generally relates to devices for imaging the interior of a vessel. The device can involve an elongated body configured to fit within the lumen of a vessel, a rotatable shaft positioned inside the elongated body, and a telescoping element, wherein a portion of the elongated body extends through the telescoping element, in which the elongated body is configured to contain the rotatable shaft inside the telescoping element.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 4, 2021
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Douglas Meyer, Dylan Van Hoven
  • Patent number: 10980516
    Abstract: According to one embodiment, an ultrasonic diagnostic apparatus comprises plurality of processing circuitry and control circuitry. The control circuitry comprises a plurality of processing circuitry interfaces, a plurality of internal memories, and a control information interface. The plurality of processing circuitry interfaces respectively connected to the plurality of processing circuitry. The plurality of internal memory respectively connected to the plurality of processing circuitry interfaces. The control information interface configured to transfer control information associated with at least reception of the ultrasonic wave to at least one of the plurality of internal memories.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: April 20, 2021
    Assignee: Canon Medical Systems Corporation
    Inventor: Jaeho Choi
  • Patent number: 10984531
    Abstract: Apparatus and methods are described for use with an imaging device (12) configured to acquire a set of angiographic images of a lumen. At least one processor (10) determines blood velocity within the lumen, via image processing. The processor determines a value of a flow-related parameter at the location based upon the determined blood velocity. The processor additionally receives an indication of a value of a second flow-related parameter of the subject, and determines a value of a luminal-flow-related index of the subject at the location, by determining a relationship between the value of the current flow-related parameter and the value of the second flow-related parameter. Other applications are also described.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 20, 2021
    Assignee: SYNC-RX, LTD.
    Inventors: Eldad Klaiman, Ran Cohen, David Tolkowsky, Alexander Steinberg
  • Patent number: 10966636
    Abstract: Improved cross-calibration between magnetic resonance imaging (MRI) coordinates and optical tracking coordinates is provided. Initial calibration is performed with a calibration tool that includes wireless active markers that can be tracked using the MRI scanner, and an optical marker that can be tracked using the optical tracking system. Data from one or more poses of this tool are used to provide an initial cross-calibration. In use, this initial calibration is corrected to account for differences between actual camera position and the reference location. Here the reference location is the camera location at which the initial calibration was performed.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: April 6, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Julian Maclaren, Murat Aksoy, Melvyn B. Ooi, Roland Bammer
  • Patent number: 10945656
    Abstract: The present invention relates to systems and methods or wide-field polarized imaging of the skin. Preferred embodiments of the invention provide quantitative characterization of collagen structures in the skin and can be used to monitor skin treatment. A preferred embodiment can comprise a handheld imaging device that generates polarized images at different depths beneath a dermal surface and a data processor to process image data.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 16, 2021
    Assignee: THE UNIVERSITY OF MASSACHUSETTS
    Inventors: Anna N. Yaroslavsky, Xin Feng
  • Patent number: 10945793
    Abstract: The present teaching relates to surgical procedure assistance. In one example, a first image of a patient captured prior to a surgical procedure is received. A treatment plan is generated based on the first image. The treatment plan includes information related to one or more surgical instruments. A second image of the patient captured after the surgical procedure has been initiated is received. The treatment plan is dynamically adjusted based on a pose of any of the one or more surgical instruments identified from the second image. A third image of the patient captured after a lesion is treated by at least one of the surgical instruments based on the adjusted treatment plan is received. Whether a further treatment to the lesion is needed is determined based on the third image. Upon determining a further treatment is needed, an updated treatment plan is dynamically generated based on the third image.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: March 16, 2021
    Assignee: EDDA TECHNOLOGY, INC.
    Inventors: Guo-Qing Wei, Cheng-Chung Liang, Li Fan, Jian-Zhong Qian, Xiaolan Zeng
  • Patent number: 10939869
    Abstract: A sub-dermal structure visualization system and method is disclosed. The system may use an illumination module including: a near-infrared (NIR) light source adapted to substantially uniformly illuminate an imaged area including sub-dermal regions thereof with NIR light; and a first optical system including at least one optical element for controlling at least one of spectral and polarization properties of the NIR light prior to illuminating the imaged area. An imaging module rejects unwanted signals from an imaged area while passing desired optical signals that are to be received by an image acquisition module. The desired optical signals can comprise a vein visualization signal to assist in visualizing a vascular structure below a skin layer of a patient.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: March 9, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Stavros Demos
  • Patent number: 10918355
    Abstract: An ultrasound diagnostic device includes: an ultrasound probe including a plurality of ultrasound transducers transmitting ultrasound waves to an object and receiving ultrasound waves reflected from the object to output an ultrasound detection signal, a region-of-interest setting device setting a region of interest within the object, a transmission focus instructing device making the ultrasound probe transmit the ultrasound waves by focusing on the region of interest, a device setting at least one or more points of interest in the region of interest, a device finding a change in sound velocity or attenuation at the point of interest, and a device finding an index indicating a sonic variation or an attenuation variation based on the change in sound velocity or attenuation.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 16, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Kimito Katsuyama