Patents Examined by Shamim Ahmed
  • Patent number: 11325152
    Abstract: A vessel has a lumen defined at least in part by a wall. The wall has an interior surface facing the lumen, an outer surface, and a plasma-enhanced chemical vapor deposition (PECVD) coating set supported by the wall. The PECVD coating set comprises a water barrier coating or layer having a water contact angle from 80 to 180 degrees, applied using a precursor comprising at least one of a saturated or unsaturated fluorocarbon precursor having from 1 to 6 carbon atoms and a saturated or unsaturated hydrocarbon having from 1 to 6 carbon atoms. Optionally, the coating set includes an SiOx gas barrier coating or layer from 2 to 1000 nm thick, in which x is from 1.5 to 2.9 as measured by x-ray photoelectron spectroscopy (XPS), and optionally other related coatings.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: May 10, 2022
    Assignee: SIO2 Medical Products, Inc.
    Inventors: Martin Baltazar, Adam Breeland, Thomas E. Fisk, David Henton, Brian Maurer, Ahmad Taha, Christopher Weikart
  • Patent number: 11327218
    Abstract: Embodiments described herein relate to methods for fabricating waveguide structures utilizing substrates. The waveguide structures are formed having input coupling regions, waveguide regions, and output coupling regions formed from substrates. The regions are formed by imprinting stamps into resists disposed on hard masks formed on surfaces of the substrates to form positive waveguide patterns. Portions of the positive waveguide patterns and the hard masks formed under the portions are removed. The substrates are masked and etched to form gratings in the input coupling regions and the output coupling regions. Residual portions of the positive waveguide patterns and the hard masks disposed under the residual portions are removed to form waveguide structures having input coupling regions, waveguide regions, and output coupling regions formed from substrates.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Michael Yu-tak Young, Wayne McMillan, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Patent number: 11322354
    Abstract: Based on the fact that a film thickness of a film formed in a film formation processing of repeatedly performing a first sequence varies according to a temperature of the surface on which the film is to be formed, the film formation processing is performed after the temperature of each region of the surface of the wafer is adjusted to reduce a deviation of a trench on the surface of the wafer, so that the film is very precisely formed on the inner surface of the trench while reducing the deviation of the trench on the surface of the wafer. When the trench width is narrower than a reference width, an etching processing of repeatedly performing a second sequence is performed in order to expand the trench width, so that the surface of the film provided in the inner surface of the trench is isotropically and uniformly etched.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 3, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Masahiro Tabata
  • Patent number: 11320384
    Abstract: Method and systems are presented for authentication of precious stones, according to their natural ID and/or predetermined markings created in the stones, based on unique characteristic radiation response of the stone to predetermined primary radiation.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: May 3, 2022
    Assignees: SOREQ NUCLEAR RESEARCH CENTER, SECURITY MATTERS LTD., YAHIOMA TECHNOLOGIES INC.
    Inventors: Yair Grof, Tzemah Kislev, Nadav Yoran, Haggai Alon, Mor Kaplinsky
  • Patent number: 11312048
    Abstract: A surface treatment method of a material, comprising: respectively immersing a material to be treated into a first inorganic acid solution and a fluoride acidic solution to perform surface etching, so that nano-sized holes are formed in the surface of the material to be treated. Further disclosed are a material product and a composite material.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: April 26, 2022
    Assignee: GUANGDONG EVERWIN PRECISION TECHNOLOGY CO., LTD.
    Inventors: Xiangsheng Ren, Tianyu Wang
  • Patent number: 11314166
    Abstract: Methods and systems for imprint lithography are described. In an embodiment, a method may include receiving a substrate in an imprint lithography chamber. Such a method may also include applying a deformable layer to a surface of the substrate. The method may further include injecting a gas that dissolves into the deformable layer more quickly than air into the chamber. Additionally, the method may include pressing a mold into the deformable layer. The method may also include controlling one or more processing parameters in order to achieve device formation objectives.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: April 26, 2022
    Assignee: Tokyo Electron Limited
    Inventor: Hoyoung Kang
  • Patent number: 11306410
    Abstract: An anti-coking nanomaterial based on a stainless steel surface. In percentage by weight, the nanomaterial comprises: 0 to 3% of carbon, 23% to 38% of oxygen, 38% to 53% of chromium, 10% to 35% of ferrum, 0 to 2% of molybdenum, 0 to 4% of nickel, 3.5 to 5% of silicon, 0 to 1% of calcium, and the balance of impurity elements. Also disclosed are a preparation method for the anti-coking nanomaterial, the anti-coking nanomaterial that is based on a stainless steel surface and that is prepared by using the preparation method, and a stainless steel substrate comprising the anti-coking nanocrystalline material.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: April 19, 2022
    Assignee: SHENZHEN CANDORTECH INCORPORATED COMPANY
    Inventor: Chao Chen
  • Patent number: 11306249
    Abstract: A substrate processing method includes holding a substrate; and supplying an etching liquid to the substrate held in the holding of the substrate. The etching liquid contains an etching agent configured to etch a metal-based first material and a silicon-based second material exposed on the substrate and a protection agent configured to react with the second material between the first material and the second material to form a protection layer on a surface of the second material. Here, the etching agent is a liquid which contains fluorine atoms and an organic solvent and substantially does not contain water, and the protection layer protects the second material from etching with the etching agent.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: April 19, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Koukichi Hiroshiro, Tetsuya Sakazaki, Koji Kagawa, Kenji Sekiguchi, Kazuyoshi Mizumoto
  • Patent number: 11307341
    Abstract: A method for manufacturing a metal wire grid polarizer includes providing a template having grooves; forming a metal layer in the grooves, which comprises coating a metal thin film on a surface of the template on which the grooves are provided, and impressing the metal thin film so that the metal thin film is filled in the grooves to form a metal wire grid structure, the metal wire grid structure comprising the metal layer formed in the grooves and a cladding layer integrated with the metal layer and covering the surface of the template; and moving the metal layer to a substrate to manufacture the metal wire grid polarizer.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: April 19, 2022
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Kang Guo, Yanhui Lu, Xin Gu
  • Patent number: 11299806
    Abstract: A method of coating particles includes dispensing particles into a vacuum chamber to form a particle bed in at least a lower portion of the chamber that forms a half-cylinder, evacuating the chamber through a vacuum port in an upper portion of the chamber, rotating a paddle assembly such that a plurality of paddles orbit a drive shaft to stir the particles in the particle bed, injecting a reactant or precursor gas through a plurality of channels into the lower portion of the chamber as the paddle assembly rotates to coat the particles, and injecting the reactant or precursor gas or a purge gas through the plurality of channels at a sufficiently high velocity such that the reactant or precursor a purge gas de-agglomerates particles in the particle bed.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: April 12, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jonathan Frankel, Quoc Truong, Sekar Krishnasamy, Govindraj Desai, Sandip S. Desai
  • Patent number: 11292029
    Abstract: The present disclosure enables high contrast, fast, uniform, and color-neutral dynamic-glass elements based on uniform and reversible electrodeposition of metals a surface of the element. Elements in accordance with the present disclosure include a surface-modified transparent-conductor-based window electrode, wherein the surface modification of the window electrode includes a nucleation layer that is anchored to the transparent conductor via a non-metallic adhesion layer. In some embodiments, a plurality of traces is disposed on and electrically connected to the window electrode to reduce the voltage drop across the total area of the element, where the traces have a core made of a low-resistivity material.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: April 5, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher J. Barile, Daniel J. Slotcavage, Michael David McGehee, Tyler S. Hernandez, Michael T. Strand
  • Patent number: 11292920
    Abstract: A method of treating an aircraft transparency includes applying a water repellant coating composition over a surface of an aircraft transparency substrate, the water repellant coating composition includes a non-chlorinated perfluoroalkylalkylsilane and/or a non-halogenated polyorganosiloxane. The method can include applying a primer composition having an organic solvent and a silicon material over the aircraft transparency substrate to form a primed substrate surface; applying the water repellant coating composition over the primed substrate surface; and heating the water repellant coating composition to form a water repellant coating.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: April 5, 2022
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Frank Nguyen, Tun-Min Maung, Alexander Bimanand
  • Patent number: 11286402
    Abstract: Use of a chemical mechanical polishing (CMP) composition (Q) for chemical mechanical polishing of a substrate (S) comprising (i) cobalt and/or (ii) a cobalt alloy, wherein the CMP composition (Q) comprises (A) Inorganic particles (B) a triazine derivative of the general formula (I) wherein R1, R2, R3, R4, R5 and R6 are independently from each other H, methyl, ethyl, propyl, butyl, pentyl, C2-C10-alkylcarboxylic acid, hydroxymethyl, vinyl or allyl (C) at least one amino acid, (D) at least one oxidizer (E) an aqueous medium and wherein the CMP composition (Q) has a pH of from 7 to 10.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: March 29, 2022
    Inventors: Robert Reichardt, Max Siebert, Yongqing Lan, Michael Lauter, Sheik Ansar Usman Ibrahim, Reza Golzarian, Haci Osman Guevenc, Julian Proelss, Leonardus Leunissen
  • Patent number: 11285577
    Abstract: The invention provides a polymer-polymer composite polishing method comprising a polishing layer having a polishing surface for polishing or planarizing a substrate. The method includes attaching a polymer-polymer composite having a polishing layer and a polymeric matrix. The polymer matrix has fluoropolymer particles embedded in the polymeric matrix. Then a cationic particle slurry is applied to the polymer-polymer composite polishing pad. Conditioning the polymer-polymer composite polishing pad with an abrasive cuts the polymer-polymer composite polishing pad; and rubbing the cut polymer-polymer composite polishing pad against the substrate forms the polishing surface. The polishing surface has a fluorine concentration measured in atomic percent at a penetration depth of 1 to 10 nm of at least ten percent higher than the bulk fluorine concentration measured with at a penetration depth of 1 to 10 ?m to polish or planarize the substrate.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 29, 2022
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Mohammad T. Islam, Nan-Rong Chiou, Matthew R. Gadinski, Youngrae Park, Gregory Scott Blackman, Lei Zhang, George C. Jacob
  • Patent number: 11286563
    Abstract: In a substrate processing apparatus for performing substrate processing by supplying, to a substrate, a source gas containing a source material of a film to be formed on the substrate, a processing chamber in which the substrate is mounted is provided. A source gas supply unit is configured to contain the source material and supplies the source gas toward the processing chamber. A buffer tank is configured to temporarily store the source gas received from the source gas supply unit. A valve arrangement unit in which supply on/off valves, each of which is configured to perform a supply and a shut-off of the supply of the source gas stored in the buffer tank to the processing chamber, are arranged. The valve arrangement unit, the buffer tank, and the source gas supply unit are arranged, in this order, above the processing chamber from the bottom side of the substrate processing apparatus.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: March 29, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Eiichi Komori
  • Patent number: 11274226
    Abstract: The present disclosure relates to solutions for forming a fluoropolymer coatings, comprising: i) an organic solvent, and dissolved therein ii) a fluoropolymer comprising repeat units arising from specific fluoroolefin, alkyl or aryl vinyl ether and alkenyl silane monomers. The present fluoropolymer solutions have long shelf stability life, minimal to no formation of insoluble residue or gel over the period between their manufacture and use, are of a viscosity that allows for facile filtration and so are substantially free from undesirable submicron size particles, have a dissolved polymer content such that the solutions are of utility in commercial single-coat coating processes, and afford fluoropolymer coatings on substrates that have excellent adhesion to the substrate during use and over the lifetime of the electronic device.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: March 15, 2022
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Xudong Chen, Timothy Edward Hopkins, Robert Clayton Wheland
  • Patent number: 11276579
    Abstract: A substrate processing method for reducing a surface roughness of a semiconductor wafer by processing a film structure having at least two types of films beforehand disposed on the substrate, including steps of repeating an adsorption step of supplying activated particles into the processing chamber and allowing the particles to be adsorbed to a surface of a desirable film to be etched in the at least two types of films to allow the particles to combine with a material of the desirable film to form a reaction layer, a removal step of using plasma generated by supplying oxygen into the processing chamber to remove a deposit containing particles adhering to a surface of an undesirable film to be etched in the films, and a desorption step of desorbing and removing the reaction layer on the desirable film to be etched by heating the sample.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 15, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Hiroyuki Kobayashi, Nobuya Miyoshi, Kazunori Shinoda, Yutaka Kouzuma, Masaru Izawa
  • Patent number: 11273469
    Abstract: Described herein are architectures, platforms and methods for acquiring optical emission spectra from an optical emission spectroscopy system by flowing a dry cleaning gas into a plasma processing chamber of the plasma processing system and igniting a plasma in the plasma processing chamber to initiate the waferless dry cleaning process.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 15, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Brian J. Coppa, Deepak Vedhachalam, Francois C. Dassapa
  • Patent number: 11274366
    Abstract: A surface-coated cutting tool includes a substrate and a coating film that coats the substrate, wherein the coating film includes a hard coating layer constituted of a domain region and a matrix region, the domain region is a region having a plurality of portions divided and distributed in the matrix region, the domain region has a structure in which a first layer composed of a first Alx1Ti(1-x1) compound and a second layer composed of a second Alx2Ti(1-x2) compound are layered on each other, the matrix region has a structure in which a third layer composed of a third Alx3Ti(1-x3) compound and a fourth layer composed of a fourth Alx4Ti(1-x4) compound are layered on each other, the first AlTi compound, the second AlTi compound and the fourth AlTi compound have a cubic crystal structure, the third AlTi compound has a hexagonal crystal structure.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: March 15, 2022
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Anongsack Paseuth, Yasuki Kido, Susumu Okuno, Shinya Imamura
  • Patent number: 11274361
    Abstract: A method for manufacturing an optical element according to a prescription is provided, including providing a combination of a block piece and a lens blank having a first face and a second face opposite to the first face, the lens blank being blocked with the first face on the block piece, surfacing and polishing the second face of the lens blank, cleaning the lens blank, hard coating the second face of the lens blank, degassing the lens blank, applying an AR-coating in a vacuum box coater, and deblocking the processed lens blank from the block piece, wherein the cleaning step includes a pre-cleaning step including a finishing drying step allowing the lens blank to be put on hold, and a deep cleaning step prior to the hard coating step.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: March 15, 2022
    Assignee: SATISLOH AG
    Inventors: Marc Peter, Marcel Flemming