Patents Examined by Steven Loke
  • Patent number: 10068990
    Abstract: A MOS transistor with stacked nanowires and a method of manufacturing the same. The transistor may include a stack of cascaded nanowires extending in a first direction on a substrate; a gate stack extending in a second direction across the nanowire stack; source and drain regions disposed on opposite sides of the gate stack in the second direction; and a channel region constituted of the nanowire stack between the source and drain regions. The cascaded nanowires can be formed by repeated operations of etching back, and lateral etching and then filling of grooves, thereby increasing an effective width of the channel, increasing a total area of an effective conductive section, and thus improving a drive current.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 4, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huaxiang Yin, Xiaolong Ma, Weijia Xu, Qiuxia Xu, Huilong Zhu
  • Patent number: 10062779
    Abstract: A method of manufacturing a Fin FET includes forming a fin structure over a substrate. The fin structure includes an upper layer, and part of the upper layer is exposed from an isolation insulating layer. A gate structure is formed over part of the fin structure. An amorphous layer is formed over the gate structure and the fin structure not covered by the gate structure. A recrystallized layer is formed by partially recrystallizing the amorphous layer over the fin structure not covered by the gate structure. A remaining amorphous layer which is not recrystallized is removed. Source and drain electrode layers are formed over the recrystallized layer.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 28, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jean-Pierre Colinge, Carlos H. Diaz
  • Patent number: 10056356
    Abstract: A chip package circuit board module includes a circuit board and an original chip. The circuit board includes a first pad and a second pad disposed besides the first pad and separated from the first pad. The original chip is connected to the first pad and the second pad. A width of the original chip is W1, a total width of the first pad is P1, and a total width of the second pad is P2. The total width P1 of the first pad is larger than twice of the width W1 of the original chip, and the total width P2 of the second pad is larger than twice of the width W1 of the original chip.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: August 21, 2018
    Assignee: Unimicron Technology Corp.
    Inventors: Wen-Fang Liu, Shao-Chien Lee, Chen-Wei Tseng, Zong-Hua Li
  • Patent number: 10056393
    Abstract: Integrated devices comprising pinched hysteresis loop (PHL) materials in a capacitor or a transistor stack are disclosed. PHL materials include field induced ferroelectrics (FFE), anti-ferroelectric (AFE) and relaxor type ferroelectric (RFE) materials. Each integrated device includes a material stack with a PHL material layer disposed between two electrodes. Application of this material is dependent on inducing of an electric field bias over the stack. According to one option, electrodes having different workfunction values can be employed to induce the required built-in bias field and enable use of PHL materials. According to another option, a PHL material and charges, e.g., a charge interlayer, are disposed between two electrodes such that an induced built-in bias field appears. Integrated devices employing the PHL material stack include memories, transistors, and piezo- and pyroelectric devices.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 21, 2018
    Assignee: NaMLab gGmbH
    Inventors: Uwe Schröder, Milan Pe{hacek over (s)}ić
  • Patent number: 10050080
    Abstract: The invention relates to an optoelectronic device (50) including: a semiconductor substrate (14) doped with a first conductivity type; semiconductor contact pads (54) or a semiconductor layer, in contact with a surface of the substrate, doped with a second conductivity type opposite to the first type; conical or frusto-conical wired semiconductor elements (26), doped with the first conductivity type, each element being in contact with one of the contact pads or with the layer; light-emitting semiconductor portions (30), each portion at least partially covering one of the semiconductor elements; and a circuit (S) for polarizing the contact pads (54) or the layer. The contact pads or the layer are selected among: aluminum nitride, boron nitride, silicon carbide, magnesium nitride, gallium and magnesium nitride, or a combination of same and the nitride compounds thereof.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: August 14, 2018
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Aledia
    Inventors: Philippe Gilet, Alexei Tchelnokov, Ivan Christophe Robin
  • Patent number: 10043787
    Abstract: Optoelectronic devices and method of forming the same include an optoelectronic chip in a substrate layer, the optoelectronic chip having one or more optoelectronic components. An integrated circuit chip is positioned on the substrate layer. A lens array is positioned on the substrate layer above the optoelectronic chip and above at least part of the integrated circuit chip. The lens array includes one or more lens positioned directly respective optoelectronic components.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Masao Tokunari
  • Patent number: 10043824
    Abstract: The present disclosure relates to a semiconductor device. The semiconductor device includes a semiconductor on an insulator (SOI) substrate having a bottom substrate, a buried oxide layer on the bottom substrate, and a semiconductor layer on the buried oxide layer. The semiconductor device also includes a first dielectric layer disposed on the semiconductor layer, a first contact structure extending from a top surface of the first dielectric layer through the semiconductor layer and the buried oxide layer and contacting the bottom substrate, and a first trench extending into the semiconductor layer. A width of the first trench is smaller than a width of the first contact structure. The first dielectric layer seals the first trench at or near the top of the first trench to form a vacuum gap.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: August 7, 2018
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Tsung-Hsiung Lee, Chun-Ting Yang, Ho-Chien Chen
  • Patent number: 10038085
    Abstract: A method includes providing a heterostructure body with a buffer region, and a barrier region disposed on the buffer region, and forming a gate structure for controlling the channel on the heterostructure body, the gate structure having a doped semiconductor region disposed on the heterostructure body, an interlayer disposed on the doped semiconductor region, and a gate electrode disposed on the interlayer. Forming the gate structure includes controlling a doping concentration of the doped semiconductor region such that a portion of the channel adjacent the gate structure is non-conductive at zero gate bias, and controlling electrical and geometrical characteristics of the interlayer based upon a relationship between the electrical and geometrical characteristics of the interlayer and corresponding effects on a static threshold voltage and a dynamic threshold voltage shift of the semiconductor device.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 31, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Haeberlen, Gerhard Prechtl, Clemens Ostermaier
  • Patent number: 10020202
    Abstract: A method of fabricating multi Vth devices and the resulting device are disclosed. Embodiments include forming a high-k dielectric layer over a substrate; forming a first TiN layer, a first barrier layer, a second TiN layer, a second barrier layer, and a third TiN layer consecutively over the high-k dielectric layer; forming a first masking layer over the third TiN layer in a first region; removing the third TiN layer in second and third regions, exposing the second barrier layer in the second and third regions; removing the first masking layer; removing the exposed second barrier layer; forming a second masking layer over the third TiN layer in the first region and the second TiN layer in the second region; removing the second TiN layer in the third region, exposing the first barrier layer in the third region; removing the second masking layer; and removing the exposed first barrier layer.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: July 10, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Donghun Kang, Balaji Kannan, Jinping Liu
  • Patent number: 10020383
    Abstract: A method of forming self-aligned STI regions extending over portions of a Si substrate to enable the subsequent formation of epitaxially grown embedded S/D regions without using a lithography mask and the resulting device are provided. Embodiments include forming a STI etch mask with laterally separated openings over a Si substrate; forming shallow trenches into the Si substrate through the openings; forming first through fourth oxide spacers on opposite sidewalls of the shallow trenches and the openings; forming a deep STI trench between the first and second oxide spacers and between the third and fourth oxide spacers down into the Si substrate; forming a STI oxide layer over the first through fourth oxide spacers and a portion of the STI etch mask, the STI oxide layer filling the deep STI trenches; and planarizing the STI oxide layer down to the portion of the STI etch mask.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: July 10, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jing Wan, Jer-Hueih(James) Chen, Cuiqin Xu, Padmaja Nagaiah
  • Patent number: 10014268
    Abstract: A semiconductor device includes a substrate main body, a plurality of first bump pads, and redistribution layer (RDL). The first bump pads are disposed adjacent to a surface of the substrate main body, each of the first bump pads has a first profile from a top view, the first profile has a first width along a first direction and a second width along a second direction perpendicular to the first direction, and the first width of the first profile is greater than the second width of the first profile. The RDL is disposed adjacent to the surface of the substrate main body, and the RDL includes a first portion disposed between two first bump pads.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: July 3, 2018
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Chun-Jun Zhuang, Hung-Chun Kuo, Chun-Chin Huang
  • Patent number: 10008576
    Abstract: A method of controlling the facet height of raised source/drain epi structures using multiple spacers, and the resulting device are provided. Embodiments include providing a gate structure on a SOI layer; forming a first pair of spacers on the SOI layer adjacent to and on opposite sides of the gate structure; forming a second pair of spacers on an upper surface of the first pair of spacers adjacent to and on the opposite sides of the gate structure; and forming a pair of faceted raised source/drain structures on the SOI, each of the faceted source/drain structures faceted at the upper surface of the first pair of spacers, wherein the second pair of spacers is more selective to epitaxial growth than the first pair of spacers.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: June 26, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: George Robert Mulfinger, Xusheng Wu
  • Patent number: 9997484
    Abstract: A semiconductor device includes a wiring substrate, a first semiconductor element, a second semiconductor element, a bump, a bonding portion, and a resin portion. The second semiconductor element is between the wiring substrate and the first semiconductor element. The bump is between the first and second semiconductor elements and electrically connects the first and second semiconductor elements. The bonding portion is between the first and second semiconductor elements, bonds the first semiconductor element to the second semiconductor element, and has a first elastic modulus. The resin portion has a second elastic modulus higher than the first elastic modulus. The resin portion is between the first and second semiconductor elements. The first semiconductor element is between a second portion of the resin portion and the wiring substrate. A third portion of the resin portion is overlapped with the first and second semiconductor elements.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: June 12, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Takeori Maeda, Masatoshi Fukuda, Ryoji Matsushima, Hideo Aoki
  • Patent number: 9991178
    Abstract: An interposer is provided which includes: a substrate having a first surface with a plurality of first conductive pads and a second surface opposite to the first surface, the second surface having a plurality of second conductive pads; a plurality of conductive through holes penetrating the first and second surfaces of the substrate and electrically connecting the first and second conductive pads; and a first removable electrical connection structure formed on the first surface and electrically connecting a portion of the first conductive pads so as to facilitate electrical testing of the interposer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 5, 2018
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Lu-Yi Chen, Chi-Hsin Chiu, Shih-Kuang Chiu
  • Patent number: 9991180
    Abstract: A semiconductor device includes: a resin case that houses a semiconductor element; a parallel plate that is disposed inside the resin case while being connected with the semiconductor element, the parallel plate including two flat plates parallel to each other with an insulating material therebetween; two electrodes that are each led out from two electrode lead-out portions in an upper end of the parallel plate and are disposed on an upper surface of the resin case at a predetermined interval; and a metal plate that stands erect on the main surface of the flat plate in a region at the predetermined interval between the two electrode lead-out portions.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: June 5, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Tsukamoto, Mituharu Tabata
  • Patent number: 9991353
    Abstract: Machining accuracy of an IGBT region is worsened due to a height difference caused by polysilicon. Therefore, there is a problem that characteristic variation of the IGBT increases. Provided is a semiconductor device including a semiconductor substrate; a gate wiring layer provided on a front surface side of the semiconductor substrate; and a gate structure that includes a gate electrode and is provided on the front surface of the semiconductor substrate. The gate wiring layer includes an outer periphery portion that is a metal wiring layer and is provided along an outer periphery of the semiconductor substrate; and an extending portion that is a metal wiring layer, is provided extending from the outer periphery portion toward a central portion of the semiconductor substrate, and is electrically connected to the gate electrode.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: June 5, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 9985150
    Abstract: A graphite substrate is processed to have surface unevenness in a range of 1 ?m to 8 ?m. Thereby, a semiconductor film to be laminated on the graphite substrate has a stable film quality, and thus adhesion of the graphite substrate and the semiconductor layer can be enhanced. When an electron blocking layer is interposed between the graphite substrate and the semiconductor layer, the electron blocking layer is thin and thus the surface unevenness of the graphite substrate is transferred onto the electron blocking layer. Consequently, the electron blocking layer also has surface unevenness approximately in such range. Thus, almost the same effect as a configuration in which the semiconductor layer is directly connected to the graphite substrate can be produced.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: May 29, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Toshinori Yoshimuta, Satoshi Tokuda, Koichi Tanabe, Hiroyuki Kishihara, Masatomo Kaino, Akina Yoshimatsu, Toshiyuki Sato, Shoji Kuwabara
  • Patent number: 9985036
    Abstract: In a semiconductor device, a first active region has a first ?-shape, and the second active region has a second ?-shape. When a line that is perpendicular to the substrate and passes a side surface of a first gate electrode in the first region is defined as a first vertical line, when a line that is perpendicular to the substrate and passes a side surface of a second gate electrode in the second region is defined as a second vertical line, when a shortest distance between the first vertical line and the first trench is defined as a first horizontal distance, and when a shortest distance between the second vertical line and the second trench is defined as a second horizontal distance, a difference between the first horizontal distance and the second horizontal distance is equal to or less than 1 nm.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: May 29, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Myung-Sun Kim, Seong-Jin Nam, Pan-Kwi Park, Hoi-Sung Chung, Nae-In Lee
  • Patent number: 9984885
    Abstract: A non-volatile memory device may include a first well of a first conductive type formed over a substrate, a second well of a second conductive type formed over the substrate to contact the first well, a trench formed over the substrate on a border formed by the contact of the first well and the second well, and a memory gate having a memory layer formed over a surface of the trench, and a gate electrode formed to fill the trench over the memory layer.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: May 29, 2018
    Assignee: SK Hynix Inc.
    Inventors: Heon-Joon Kim, Jong-Hyun Choi
  • Patent number: 9978779
    Abstract: A display device having a display area and a non-display area includes a substrate, a pixel at the display area, a signal line on the substrate and electrically connected to the pixel, and a static electricity prevention capacitor at the non-display area and including a lower pattern having a first region and a second region that have different electrical conductivities from each other, an insulating layer on the lower pattern, and an upper pattern including a portion of the signal line and overlapping the first region of the lower pattern in a plan view.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: May 22, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: Gi Chang Lee, In Soo Wang, Yong Soo Lee