Patents Examined by Stuart L. Hendrickson
  • Patent number: 10654722
    Abstract: Methods for making carbon materials are provided. In at least one specific embodiment, the method can include combining one or more polymer precursors with one or more liquids to produce a mixture. The mixture can be an emulsion, dispersion, or a suspension. The liquid can include hexane, pentane, cyclopentane, benzene, toluene, o-xylene, m-xylene, p-xylene, diethyl ether, ethylmethylketone, dichloromethane, tetrahydrofuran, mineral oils, paraffin oils, vegetable derived oils, or any mixture thereof. The method can also include aging the mixture at a temperature and time sufficient for the polymer precursor to react and form polymer gel particles having a volume average particle size (Dv,50) of the polymer particles in gel form greater than or equal to 1 mm. The method can also include heating the polymer gel particles to produce a carbon material.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 19, 2020
    Assignees: Georgia-Pacific Chemicals LLC, Energ2 Technologies, Inc.
    Inventors: Katharine Geramita, Benjamin E. Kron, Henry R. Costantino, Aaron M. Feaver, Avery Sakshaug, Leah A. Thompkins, Alan Tzu-Yang Chang, Xing Dong, Shahid P. Qureshi, John B. Hines, Gerald A. Knazek, Joseph Frank Ludvik
  • Patent number: 10654582
    Abstract: An inert gas generating system includes a source of a gaseous mixture, and a fuel separation unit configured to receive a portion of the gaseous mixture from the source. The fuel separation unit includes a reverse selective membrane configured to separate the gaseous mixture into a condensable gas portion and a permanent gas portion. The inert gas generating system further includes a catalytic oxidation unit configured to receive and react hydrocarbon vapors within the condensable gas portion to produce an inert gas.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: May 19, 2020
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jonathan Rheaume, Haralambos Cordatos
  • Patent number: 10651471
    Abstract: The present invention concerns a process for the preparation of a porous carbon structure comprising the steps: a) providing a template comprising voids, b) filling of at least part of the voids with a precursor for the formation of the porous carbon structure, c) carbonizing the precursor for the formation of the porous carbon structure and d) removing at least part of the template. In preferred embodiments the precursor for the formation of the porous carbon structure is a formaldehyde-phenol resin, especially a cross-linked resorcinol-formaldehyde resin. The template further preferably comprises a block copolymer and an amphiphilic molecule, wherein the block copolymer comprises polymeric units of at least one lipophilic monomer and polymeric units of at least one hydrophilic monomer. Further preferred is a process wherein the template comprises a bimodal mixture of particles of silicon dioxide.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 12, 2020
    Assignee: Leibniz-Institut für Polymerforschung Dresden e.V.
    Inventors: Soumyadip Choudhury, Leonid Ionov, Manfred Stamm, Mukesh Agrawal, Marta Horecha
  • Patent number: 10647933
    Abstract: Hydropyrolysis processes that accompany the generation of activated carbon as an end product, as well as processes for the production of activated carbon from hydropyrolysis char, are described. Representative processes comprise upgrading, by steam activation, char that is formed from solid biomass-containing feedstocks and/or solid biomass derived feedstocks, such as lignocellulosic feedstocks (e.g., wood). Such processes are associated with a number of advantages in terms of achieving operating synergies, obtaining desirable intermediate material and end product properties, reducing environmental impact, and significantly improving economic attractiveness.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 12, 2020
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Martin B. Linck, Michael J. Roberts
  • Patent number: 10632418
    Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 28, 2020
    Assignee: UT-BATTELLE, LLC
    Inventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
  • Patent number: 10626028
    Abstract: A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 21, 2020
    Assignee: UT-BATTELLE, LLC
    Inventors: Richard T. Mayes, Sheng Dai
  • Patent number: 10619049
    Abstract: The present invention relates to a process for the manufacturing of a calcium carbonate-comprising material, a calcium carbonate-comprising material obtained by a process as well as the use of the calcium carbonate-comprising material for paper filler and paper coating applications, cigarette paper applications, for plastics applications or in paints, coatings, adhesives, replacement of titanium dioxide, preferably in paints, sealants, food, feed, pharma, concrete, cement, cosmetic, water treatment and/or agriculture applications.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: April 14, 2020
    Assignee: Omya International AG
    Inventors: Daniel Gantenbein, Patrick A. C. Gane, Rolf Endre Orten, Jan Philipp Weihs, Philipp Hunziker, Asbjørn Høyem Amundsen, Tommy Sandvik, Bjørn Jensen
  • Patent number: 10617136
    Abstract: This invention is about calcium oxide. The invention relates more particularly to obtaining the calcium oxide with high purity and on the implementation.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 14, 2020
    Assignee: ARKIM KIMYEVI MADDELER SANAYI VE TICARET ANONIM SIRKETI
    Inventors: Elif Güngör Reis, Muzaffer Yaşar, Leyla Türker Şener
  • Patent number: 10596549
    Abstract: Activated carbon monolith catalyst including a finished self-supporting activated carbon monolith having at least one passage therethrough, and including a supporting matrix and substantially discontinuous activated carbon particles dispersed throughout the supporting matrix and at least one catalyst precursor on the finished self-supporting activated carbon monolith. A method for making, and a method for use, of such an activated carbon monolith catalyst in catalytic chemical reactions.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: March 24, 2020
    Assignee: Applied Technology Limited Partnership
    Inventors: Robert L. Mitchell, Lee M. Mitchell, Joseph H. Keller, Jack H. L'Amoreaux
  • Patent number: 10583394
    Abstract: Embodiments of the present disclosure are directed to systems and methods of removing carbon dioxide from a gaseous stream using magnesium hydroxide and then regenerating the magnesium hydroxide. In some embodiments, the systems and methods can further comprise using the waste heat from one or more gas streams to provide some or all of the heat needed to drive the reactions. In some embodiments, magnesium chloride is primarily in the form of magnesium chloride dihydrate and is fed to a decomposition reactor to generate magnesium hydrochloride, which is in turn fed to a second decomposition reactor to generate magnesium hydroxide.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: March 10, 2020
    Assignee: CARBONFREE CHEMICALS HOLDINGS, LLC
    Inventors: Joe Jones, Al Yablonsky
  • Patent number: 10577248
    Abstract: Lake Kivu contains ˜50 million tonnes (MT) dissolved biomethane. Efficient use is problematic from massive associated CO2: ˜600 MT. Conventional extraction scrubs CO2 with ˜50% overall CH4 loss, and returns ˜80% CO2 into the deep lake, preserving a catastrophe hazard threatening >2 M people. Methods and systems are disclosed coupling: (1) efficient CH4+CO2 degassing; (2) optional oxyfuel power generation and CO2 power cycle technologies; and (3) CO2 capture, processing, storage and use in a utilization hub. The invention optimally allows power production with >2× improved efficiency plus cryo-energy storage and large-scale greentech industrialization.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: March 3, 2020
    Assignee: HARPER BIOTECH LLC
    Inventor: Charles L. Harper, Jr.
  • Patent number: 10532340
    Abstract: The invention relates to the use of a high performance thermoplastic polymer binder material for immobilizing adsorptive materials, such as activated carbon, in gas storage devices. The use of these binders, especially polyamide binders, polytetrafluoroethylene binders, or polyvinylidene fluoride binders such as Kyblock® resin, provides for high sorbent packing density, low fouling solid structure that maximizes the volume of gas to the volume of the storage space.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: January 14, 2020
    Assignee: Arkema Inc.
    Inventors: Sean M. Stabler, Azaz A. Vahora, Denis Kato De Almeida, Florence Mehlmann, Ramin Amin-Sanayei
  • Patent number: 10532071
    Abstract: The invention concerns high-performance adsorbents based on activated carbon of high meso- and macroporosity which are present in the form of discrete grains of activated carbon, wherein: at least 55% of the total pore volume of the high-performance adsorbents are formed by pores (i.e. meso- and macropores) having pore diameters of more than 20 ?, the high-performance adsorbents have a measure of central tendency pore diameter of more than 25 ?, and the high-performance adsorbents have a BET surface area of at least 1250 m2/g. These high-performance adsorbents are obtainable by a novel process comprising specific two-stage activation, and have, in addition to the aforementioned properties, an excellent abrasion and bursting resistance, so that they are useful for a multiplicity of different applications.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: January 14, 2020
    Assignee: Blücher GmbH
    Inventors: Bertram Böhringer, Sven Fichtner, Jann-Michael Giebelhausen
  • Patent number: 10512891
    Abstract: An activated carbon manufacturing method may include preparing activated carbon precursors, carbonizing the activated carbon precursors by performing a heat treatment on the activated carbon precursors, equalizing the activated carbon precursors carbonized, in the carbonizing, by grinding the activated carbon precursors, activating the activated carbon precursors by inserting an oxidizing agent and distilled water into the equalized activated carbon precursors and performing a heat treatment on the activated carbon precursors, and introducing metal oxide particles into the activated carbon precursors by mixing the activated precursors, a metal salt, and a reducing agent in a solvent to perform reaction on the activated carbon precursors.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 24, 2019
    Assignees: Hyundai Motor Company, Inha-Industry Partnership Institute
    Inventors: Shin Tae Bae, Young Jung Heo, Soo Jin Park
  • Patent number: 10486980
    Abstract: Process for manufacture of purified alkaline earth metal carbonate The invention concerns a process for the manufacture of a purified alkaline earth metal carbonate, the purified alkaline earth metal carbonate obtainable by said process, and its use in the manufacture of products and devices in the field of electronics and glass. The process comprises the steps of calcinating the alkaline earth metal carbonate with an aqueous phase comprising a salt. The alkaline earth metal carbonate might be barium carbonate or strontium carbonate.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: November 26, 2019
    Assignee: SOLVAY SA
    Inventors: Ferdinand Hardinghaus, Erik Bonmann, Achim Engels
  • Patent number: 10478804
    Abstract: Activated carbon monolith catalyst including a finished self-supporting activated carbon monolith having at least one passage therethrough, and including a supporting matrix and substantially discontinuous activated carbon particles dispersed throughout the supporting matrix and at least one catalyst precursor on the finished self-supporting activated carbon monolith. A method for making, and a method for use, of such an activated carbon monolith catalyst in catalytic chemical reactions.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: November 19, 2019
    Assignee: Applied Technology Limited Partnership
    Inventors: Robert L. Mitchell, Lee M. Mitchell, Joseph H. Keller, Jack H. L'Amoreaux
  • Patent number: 10472245
    Abstract: A method of making Nanostructured Zinc Silicate from renewable sources comprising preparing powders of husks, preparing powders of ZnO, mixing the powders of husks and the powders of ZnO and forming a homogenous sample powder, pressing the homogenous sample and forming pellets, heating the pellets and forming nanostructured zinc silicate. The nanostructured zinc silicate from renewable sources product of the process of preparing powders of husks, preparing powders of ZnO, mixing the powders of husks and the powders of ZnO and forming a homogenous sample powder, pressing the homogenous sample and forming pellets, heating the pellets and forming nanostructured zinc silicate.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 12, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 10468688
    Abstract: Provided are a carbon catalyst, an electrode, and a battery that exhibit excellent activity. A carbon catalyst according to one embodiment of the present invention has a carbon structure in which area ratios of three peaks fbroad, fmiddle, and fnarrow obtained by separating a peak in the vicinity of a diffraction angle of 26° in an X-ray diffraction pattern obtained by powder X-ray diffraction satisfy the following conditions (a) to (c): (a) fbroad: 75% or more and 96% or less; (b) fmiddle: 3.2% or more and 15% or less; and (c) fnarrow: 0.4% or more and 15% or less.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: November 5, 2019
    Assignees: NISSHINBO HOLDINGS INC., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Yasuo Imashiro, Takeaki Kishimoto, Tetsutaro Sato, Jun-ichi Ozaki, Takuya Maie, Sayaka Kusadokoro
  • Patent number: 10449512
    Abstract: Mesoporous activated carbon is disclosed. In at least some embodiments, virgin activated carbon to be processed may be coconut shell-based. The enhanced activated carbon may have a mesopore structure of at least about 10%. The enhanced activated carbon may be produced through a calcium-catalyzed activation process. A chelator may also be used. Catalyzed thermal activation may be carried out until a desired mass loss is achieved.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 22, 2019
    Assignee: Evoqua Water Technologies LLC
    Inventor: Adam M. Redding
  • Patent number: 10427130
    Abstract: A method of continuous hydrothermal carbonization of sludge containing organic matter involves a step of hydrothermal reaction carried out in a reactor, and at least one cooling step in which the sludge having undergone the hydrothermal reaction step is cooled. The hydrothermal reaction step includes: a step of injection of sludge in which the sludge is injected into the reactor by a first inlet; a step of injection of steam in which steam is injected into the reactor by a second inlet, the second inlet being distinct from the first inlet; a step of circulation, in which a mixture consisting of the sludge and the steam injected into the reactor is placed in circulation within the reactor; a step of continuous extraction of at least a portion of the mixture contained in the reactor by a sludge outlet. Also disclosed is a device for carrying out such a method.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: October 1, 2019
    Assignee: SUEZ INTERNATIONAL
    Inventors: Pierre Emmanuel Pardo, Jean-Louis Bourdais