Patents Examined by Stuart L. Hendrickson
  • Patent number: 10421058
    Abstract: Embodiments provide a methane microporous carbon adsorbent including a thermally-treated CVD carbon having a shape in the form of a negative replica of a crystalline zeolite has a BET specific surface area, a micropore volume, a micropore to mesopore volume ratio, a stored methane value and a methane delivered value and a sequential carbon synthesis method for forming the methane microporous carbon adsorbent. Introducing an organic precursor gas for a chemical vapor deposition (CVD) period to a crystalline zeolite that is maintained at a CVD temperature forms the carbon-zeolite composite. Introducing a non-reactive gas for a thermal treatment period to the carbon-zeolite composite maintained at a thermal treatment temperature forms the thermally-treated carbon-zeolite composite. Introducing an aqueous strong mineral acid mixture to the thermally-treated carbon-zeolite composite forms the methane microporous carbon adsorbent.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: September 24, 2019
    Assignees: SAUDI ARABIAN OIL COMPANY, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yuguo Wang, Cemal Ercan, Rashid M. Othman, Minkee Choi, Seokin Choi
  • Patent number: 10415184
    Abstract: A process for recovering carbonized lignin having a defined grain size distribution from a lignin-containing liquid is provided. The lignin-containing liquid is subjected to a hydrothermal carbonization to convert the lignin into a carbonized lignin and the carbonized lignin is separated from the liquid containing the carbonized lignin. The lignin-containing liquid is subjected to a hydrothermal carbonization at temperatures in the range from about 150° C. to about 280° C. and by adapting the H+ ion concentration in the lignin-containing liquid before and/or during the hydrothermal carbonization the grain size distribution of the carbonized lignin is adjusted.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: September 17, 2019
    Assignee: SUNCOAL INDUSTRIES GMBH
    Inventor: Tobias Wittmann
  • Patent number: 10407348
    Abstract: A generally spherical high strength ceramic body for use in an ATR and/or SR unit covering a catalyst media bed. The ceramic body is a fully stabilized YSZ composite composition having at least about 13% yttria YSZ, and more typically from about 12% to about 20% yttria YSZ, with a porosity of less than 20 percent and a diameter of at least 25 mm and, more typically, selected from the group comprising 25 mm, 50 mm, 76 mm and 100 mm.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: September 10, 2019
    Assignee: O'Brien Asset Management, LLC
    Inventor: Brian K. Osborne
  • Patent number: 10399857
    Abstract: The present invention relates to a method of preparing a hydrophobic metal oxide-silica composite aerogel having a high specific surface area and a low tap density and a hydrophobic metal oxide-silica composite aerogel prepared thereby. Thus, the preparation method may not only have excellent productivity and economic efficiency due to a relatively simpler preparation process and shorter preparation time than the related art, but may also prepare a hydrophobic metal oxide-silica composite aerogel having a high specific surface area and a low tap density.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: September 3, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Hyun Woo Jeon, Jong Hun Kim, Je Kyun Lee
  • Patent number: 10384943
    Abstract: Method and processes for synthesizing single-wall carbon nanotubes is provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 50 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: August 20, 2019
    Assignees: HONDA MOTOR CO., LTD., THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Avetik Harutyunyan, Elena Pigos, Toshio Tokune
  • Patent number: 10376861
    Abstract: The present disclosure pertains to methods of capturing CO2 from an environment at pressures above 1 bar by associating the environment with a porous material that has a surface area of at least 2,800 m2/g, and a total pore volume of at least 1.35 cm3/g, where a majority of pores of the porous material have diameters of less than 2 nm. The present disclosure also pertains to methods for the separation of CO2 from natural gas in an environment at partial pressures of either component above 1 bar by associating the environment with a porous material that has a surface area of at least 2,200 m2/g, and a total pore volume of at least 1.00 cm3/g, where a majority of pores of the porous material have diameters of greater than 1 nm and less than 2 nm.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: August 13, 2019
    Assignees: WILLIAM MARSH RICE UNIVERSITY, APACHE CORPORATION
    Inventors: Saunab Ghosh, Andrew R. Barron, Jason Ho
  • Patent number: 10381170
    Abstract: In an example of a method, a halogenide-hydrocarbon, an aprotic hydrocarbon solvent, and a reductant are combined to initiate a reaction that forms intermediate particles having a microporous framework. The intermediate particles are subjected to a heat treatment at a heat treatment temperature ranging from about 300° C. to less than 1500° C. for a heat treatment time period ranging from about 20 minutes to about 10 hours to form a precursor to microporous carbon.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 13, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Fang Dai, Jingmei Shen, Mei Cai, Anne M. Dailly
  • Patent number: 10370298
    Abstract: A corrosion resistant refractory ceramic hexagonal target tile body for use covering a catalyst, including a generally flat hexagonal portion and a plurality of generally right circular cylindrical aperture portions extending therethrough, wherein the hexagonal tile body has a thickness of about 89 mm and a width of about 42 cm and is 13 percent yttria fully stabilized YSZ. Each respective aperture has a diameter of about 19 mm.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: August 6, 2019
    Assignee: O'Brien Asset Management, LLC
    Inventor: Brian K. Osborne
  • Patent number: 10369542
    Abstract: The present invention relates to a multistage stirred reactor, comprising a multiplicity of mutually adjacent reaction chambers and stirring elements for mixing the contents of at least one of the reaction chambers, wherein, between adjacent reaction chambers, there is in each case provided at least one opening that can be closed by means of closure means, such that in the open state there is a fluidic connection between the adjacent reaction chambers and in the closed state the adjacent reaction chambers are separated from one another. At least one of the closure means (300, 310, 320) is connected to an actuation rod (500, 510, 520) that is guided out of the stirred reactor.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: August 6, 2019
    Assignee: BAYER AKTIENGESELLSCHAFT
    Inventors: Sebastian Falß, Leslaw Mleczko, Karl-Robert Boos, Sigurd Buchholz
  • Patent number: 10370539
    Abstract: A method and apparatus for making carbon black. A plasma gas is flowed into a plasma forming region containing at least one, magnetically isolated, plasma torch containing at least one electrode, and forming a plasma. Collecting the plasma formed in a cooled header and flowing the plasma through at least one reaction region to heat the reaction region, and injecting carbon black forming feedstock into the reaction region, resulting in the formation of at least one grade of carbon black. An apparatus for making carbon black is also described including a plasma forming section containing at least one, magnetically isolated plasma torch containing at least one electrode, in fluid flow communication with at least one carbon black forming reactor section, the plasma section and reactor section separated by a plasma formed collection header.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: August 6, 2019
    Assignee: MONOLITH MATERIALS, INC.
    Inventors: Peter L. Johnson, Alexander F. Hoermann, Roscoe W. Taylor, John J. Moss, Robert J. Hanson
  • Patent number: 10358346
    Abstract: Methods of concurrently forming ammonia and solid carbon products include reacting a carbon oxide, nitrogen, and a reducing agent at preselected reaction conditions in the presence of a catalyst to form a solid carbon product entrained in a tail gas mixture comprising water and ammonia; separating entrained solid carbon product from the tail gas mixture; and recovering water and ammonia from the tail gas mixture. Systems for forming ammonia and solid carbon products from a gaseous source containing carbon oxides include mixing means for mixing the gaseous source with a reducing agent, reactor means for reacting at least a portion of the gaseous source with the reducing agent in the presence of a catalyst to produce the solid carbon products and a tail gas mixture comprising the ammonia, and solid separation means for separating the solid carbon products from the tail gas mixture.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 23, 2019
    Assignee: Seerstone LLC
    Inventor: Dallas B. Noyes
  • Patent number: 10351428
    Abstract: A method for removal and recovery of phosphorus includes a precipitation step for precipitating phosphorus from a liquid stream comprising at most 30 mg of phosphorus per liter and at most than 50 mg of suspended solids per liter, using a precipitation agent, to form a precipitate, to form a precipitate; a first separation step for separating the precipitate from the liquid stream; a dissolution step for dissolving the precipitate in phosphoric acid to obtain a first solution; and a second separation step for separating the phosphoric acid and the precipitation agent.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: July 16, 2019
    Assignee: HSY HELSINGIN SEUDUN YMPÄRISTÖPALVELUT-KUNTAYHTYMÄ
    Inventors: Tommi Fred, Mari Heinonen, Paula Lindell, Sini Reuna
  • Patent number: 10343140
    Abstract: An adsorbent system includes a passage and first and second adsorbents in the passage. The first adsorbent includes granules of non-impregnated activated carbon and the second adsorbent includes granules of acid- or metal salt-impregnated adsorbent. The granules of acid- or metal salt-impregnated adsorbent have, by weight, at least 20% acid or metal salt content. The granules of acid- or metal salt-impregnated adsorbent have, by weight, at least 35% acid or metal salt content. The granules of non-impregnated activated carbon and the granules of acid- or metal salt-impregnated adsorbent have a size of mesh 4 to mesh 40, and, by total combined weight of the granules of non-impregnated activated carbon and the granules of acid- or metal salt-impregnated adsorbent, the first adsorbent has 55%-75% of the granules of non-impregnated activated carbon and the second adsorbent has 45%-25% of the granules of acid- or metal salt-impregnated adsorbent.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: July 9, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Ping Yu, Holden Timothy Ranz, Timothy A. Nalette, Gregory Quinn
  • Patent number: 10343929
    Abstract: The present invention provides a process for preparing a precipitated calcium carbonate product comprising the steps of: (a) preparing an aqueous suspension of precipitated calcium carbonate seeds by carbonating a suspension of Ca(OH)2 in the presence of 0.005 to 0.030 moles of Sr, in the form of Sr(OH)2, per mole of Ca(OH)2, (b) dewatering and dispersing the precipitated calcium carbonate seeds prepared in step (a) to obtain an aqueous suspension of precipitated calcium carbonate seeds having a d50 of less than or equal to 0.1 to 0.3 ?m and a BET specific surface area of 10 to 30 m2/g, and (c) forming an aqueous suspension of a precipitated calcium carbonate product by carbonating a slurry of Ca(OH)2 in the presence of 0.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 9, 2019
    Assignee: Omya International AG
    Inventors: Marc Maurer, Thomas Schlotterbach, Mathieu Skrzypczak, Robert Pirker
  • Patent number: 10328381
    Abstract: Disclosed is an activated carbon including pores formed on a surface thereof, in particular, the pores include ultra-micropores having a diameter that is equal to or less than about 1.0 nm.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: June 25, 2019
    Assignees: Hyundai Motor Company, INHA-Industry Partnership Institute
    Inventors: Shin Tae Bae, Young Jung Heo, Soo Jin Park
  • Patent number: 10300456
    Abstract: A method for manufacturing activated carbon may include preparing activated carbon precursors, carbonizing the activated carbon precursors by performing a heat treatment on the carbon precursors, equalizing the activated carbon precursors carbonized in the carbonizing, by grinding the activated carbon precursors, and activating the activated carbon precursors by introducing a mixture gas including carbon dioxide and steam into the ground activated carbon precursors and performing a heat treatment on the activated carbon precursors.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: May 28, 2019
    Assignees: Hyundai Motor Company, Inha University Research and Business Foundation
    Inventors: Shin Tae Bae, Youjin Park, Soo Jin Park, Young Jung Heo
  • Patent number: 10294162
    Abstract: A method for producing a carbon particle by a detonation method includes two steps. The first step is a step of disposing an explosive substance in the periphery of a raw material substance. The explosive substance has a detonation velocity of 6,300 m/s or more. The raw material substance contains an aromatic compound having not more than 2 nitro groups. The second step is a step of allowing the explosive substance to detonate.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: May 21, 2019
    Assignees: KOBE STEEL, LTD., NATIONAL INSTITUTE OF ADVANCED SCIENCE AND TECHNOLOGY
    Inventors: Ryutaro Wada, Masaya Ueda, Yozo Kakudate, Shuzo Fujiwara, Shu Usuba
  • Patent number: 10294115
    Abstract: The present invention is directed to a process for producing an aqueous suspension of precipitated calcium carbonate, wherein a milk of lime is prepared by mixing water, a calcium oxide containing material, and a precipitation enhancer, and subsequently, the milk of lime is carbonated to form an aqueous suspension of precipitated calcium carbonate.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 21, 2019
    Assignee: Omya International AG
    Inventors: Daniel E. Gerard, Patrick A. C. Gane
  • Patent number: 10273328
    Abstract: The present application is directed to methods for preparation of polymer particles in gel form and carbon materials made therefrom. The carbon materials comprise enhanced electrochemical properties and find utility in any number of electrical devices, for example, as electrode material in ultracapacitors or batteries. The methods herein can also be employed generally to improve emulsion and/or suspension polymerization processes by improved control of diffusion of acidic and basic species between the polymer and secondary phases.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: April 30, 2019
    Assignees: Georgia-Pacific Chemicals LLC, Energ2 Technologies, Inc.
    Inventors: Benjamin E. Kron, Katharine Geramita, Henry R. Costantino, Joseph Frank Ludvik, Xing Dong, Shahid P. Qureshi, Gerald A. Knazek
  • Patent number: 10276876
    Abstract: Disclosed is a method of manufacturing carbonized fine cellulose, which enables the formation of carbonized nano-sized cellulose by subjecting cellulose to drying, carbonization, and pulverization by means of shock waves using ultrasonic waves and microbubbles, thus realizing mass producibility, making it possible to fabricate a carbonized nano-sized material having uniform quality, and reducing the manufacturing costs. The carbonized fine cellulose is in the form of a nano-sized uniform carbon powder, and can thus be utilized as a catalyst support in various forms, such as fuel cell electrodes, electrodes of energy storage devices such as supercapacitors or secondary batteries, catalyst supports for micro-nano hybrid reactors, etc.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: April 30, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Hee-yeon Kim, Seong Ok Han, In-sub Han, Se-young Kim, Young-hoon Seong, Doo-won Seo, Guk Hyeon Kwon