Patents Examined by Tenley H Schofield
  • Patent number: 11978712
    Abstract: Methods and apparatus for forming a semiconductor device package with a transmission line using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top device and a bottom device. A signal transmission line may be formed using a micro-bump line above a bottom device. A ground plane may be formed using a redistribution layer (RDL) within the bottom device, or using additional micro-bump lines. The RDL formed ground plane may comprise open slots. There may be RDLs at the bottom device and the top device above and below the micro-bump lines to form parts of the ground planes.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Wei Kuo, Hsiao-Tsung Yen, Min-Chie Jeng, Yu-Ling Lin
  • Patent number: 11972966
    Abstract: In a method of manufacturing a semiconductor package, a plurality of semiconductor chips are encapsulated in a carrier to provide encapsulated semiconductor chips. A first surface of the encapsulated semiconductor chips includes chip pads exposed from a first surface of the carrier. An alignment error of each of the semiconductor chips with respect to the carrier is measured. A redistribution wiring structure may be formed on the first surface of the carrier. Correction values for each layer of the redistribution wiring structure may be reflected while forming the redistribution wiring structure in order to correct the alignment error while forming the redistribution wiring structure. The redistribution wiring structure may have redistribution wirings electrically connected to the chip pads on the first surface of the carrier. Outer connection members may be formed on the redistribution wiring structure and may be configured to be electrically connected to the outermost redistribution wirings.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: April 30, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyujin Choi, Changeun Joo
  • Patent number: 11955423
    Abstract: Methods for forming dummy under-bump metallurgy structures and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first redistribution line and a second redistribution line over a semiconductor substrate; a first passivation layer over the first redistribution line and the second redistribution line; a second passivation layer over the first passivation layer; a first under-bump metallurgy (UBM) structure over the first redistribution line, the first UBM structure extending through the first passivation layer and the second passivation layer and being electrically coupled to the first redistribution line; and a second UBM structure over the second redistribution line, the second UBM structure extending through the second passivation layer, the second UBM structure being electrically isolated from the second redistribution line by the first passivation layer.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Li Yang, Po-Hao Tsai, Ming-Da Cheng, Yung-Han Chuang, Hsueh-Sheng Wang
  • Patent number: 11942369
    Abstract: Implementations of a method of forming a semiconductor package may include forming a plurality of notches into a first side of a wafer, the first side of the wafer including a plurality of electrical contacts. The method may also include coating the first side of the wafer and an interior of the plurality of notches with a molding compound, grinding a second side of the wafer to thin the wafer to a desired thickness, forming a back metal on a second side of the wafer, exposing the plurality of electrical contacts through grinding a first side of the molding compound, and singulating the wafer at the plurality of notches to form a plurality of semiconductor packages.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 26, 2024
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Shutesh Krishnan, Sw Wei Wang, Ch Chew, How Kiat Liew, Fui Fui Tan
  • Patent number: 11935831
    Abstract: The present application discloses a method for fabricating a semiconductor device. The method includes providing a first semiconductor structure; and forming a first connecting structure comprising a first connecting insulating layer on the first semiconductor structure, a plurality of first connecting contacts in the first connecting insulating layer, and a plurality of first supporting contacts in the first connecting insulating layer.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: March 19, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Shing-Yih Shih
  • Patent number: 11923234
    Abstract: The present disclosure relates to a method for manufacturing electronic chips. The method includes forming a plurality of trenches on a first face of a semiconductor substrate, in and on which a plurality of integrated circuits has been formed. The trenches delimit laterally a plurality of chips, and each of the chips includes a single integrated circuit. The method further includes electrically isolating flanks of each of the chips by forming an electrically isolating layer on lateral walls of the trenches.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: March 5, 2024
    Assignee: STMicroelectronics (Tours) SAS
    Inventor: Ludovic Fallourd
  • Patent number: 11908790
    Abstract: A chip structure is provided. The chip structure includes a substrate. The chip structure includes a conductive line over the substrate. The chip structure includes a first passivation layer over the substrate and the conductive line. The chip structure includes a conductive pad over the first passivation layer covering the conductive line. The conductive pad is thicker and wider than the conductive line. The chip structure includes a first conductive via structure and a second conductive via structure passing through the first passivation layer and directly connected between the conductive pad and the conductive line. The chip structure includes a conductive pillar over the conductive pad.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Li Yang, Po-Hao Tsai, Ching-Wen Hsiao, Hong-Seng Shue, Yu-Tse Su
  • Patent number: 11910593
    Abstract: A semiconductor device may comprise: a plurality of lower electrodes which are on a substrate; a first electrode support which is between adjacent lower electrodes and comprises a metallic material; a dielectric layer which is on the lower electrodes and the first electrode support to extend along profiles of the first electrode support and each of the lower electrodes; and an upper electrode which is on the dielectric layer.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: February 20, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon Young Choi, Seung Jin Kim, Byung-Hyun Lee, Sang Jae Park
  • Patent number: 11887931
    Abstract: A semiconductor package includes a first semiconductor device on a first redistribution substrate, a first mold layer that covers the first semiconductor device and the first redistribution substrate, and a second redistribution substrate on the first mold layer, the second redistribution substrate including a first opening that exposes a top surface of the first mold layer, a sidewall of the second redistribution substrate that is exposed to the first opening having a stepwise structure.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: January 30, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Inhyung Song, Kyoung Lim Suk, Jaegwon Jang, Wonkyoung Choi
  • Patent number: 11877434
    Abstract: A method of forming a microelectronic device structure comprises exposing a silicon structure to an etching chemistry at a first bias voltage of greater than about 500 V to form at least one initial trench between sidewalls of features formed in the silicon structure. The method also comprises exposing at least the sidewalls of the features to the etching chemistry at a second bias voltage of less than about 100 V to remove material from the sidewalls to expand the at least one initial trench and form at least one broader trench without substantially reducing a height of the features. Related apparatuses and electronic systems are also disclosed.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: January 16, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Yan Li, Song Guo, Mohd Kamran Akhtar, Alex J. Schrinsky
  • Patent number: 11875996
    Abstract: A method of depositing a metal material on an isolated seed layer uses a barrier layer as a conductive path for plating. The method may include depositing a barrier layer on a substrate wherein the barrier layer provides adhesion for seed layer material and inhibits migration of the seed layer material, forming at least one isolated seed layer area on the barrier layer on the substrate, and depositing the metal material on the at least one isolated seed layer area using an electrochemical deposition process wherein the barrier layer provides a current path to deposit the metal material on the at least one isolated seed layer area.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: January 16, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Marvin Louis Bernt
  • Patent number: 11869926
    Abstract: Provided is a semiconductor device including a lower electrode, an upper electrode isolated from direct contact with the lower electrode, and a dielectric layer between the lower electrode and the upper electrode, the dielectric layer comprising a first metal oxide area, a second metal oxide area, and a third metal oxide area. The third metal oxide area is between the first metal oxide area and the second metal oxide area, and includes boron and one or more metal elements selected from aluminum (Al), magnesium (Mg), silicon (Si), or beryllium (Be). In the third metal oxide area, a content of boron (B) is less than or equal to a content of the metal elements of Al, Mg, Si, and/or Be.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 9, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeonggyu Song, Younsoo Kim, Jooho Lee, Narae Han
  • Patent number: 11862594
    Abstract: A package structure includes a semiconductor die, conductive pillars, an insulating encapsulation, a redistribution circuit structure, and a solder resist layer. The conductive pillars are arranged aside of the semiconductor die. The insulating encapsulation encapsulates the semiconductor die and the conductive pillars, and the insulating encapsulation has a first surface and a second surface opposite to the first surface. The redistribution circuit structure is located on the first surface of the insulating encapsulation. The solder resist layer is located on the second surface of the insulating encapsulation, wherein a material of the solder resist layer includes a filler.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Chen Tseng, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao
  • Patent number: 11862603
    Abstract: A semiconductor package includes a package substrate; a plurality of lower chip structures on the package substrate; an upper chip structure on the plurality of lower chip structures and covering portions of upper surfaces of the plurality of lower chip structures; a non-conductive adhesive layer on a lower surface of the upper chip structure and receiving upper portions of the plurality of lower chip structures; and a molded member on the plurality of lower chip structures and the upper chip structure.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: January 2, 2024
    Inventors: Taewook Kim, Jongho Lee, Jeongjoon Oh, Hyeon Hwang
  • Patent number: 11854878
    Abstract: A method of forming a semiconductor device includes forming an opening in a dielectric layer, and forming a barrier layer in the opening. A combined liner layer is formed over the barrier layer by first forming a first liner layer over the barrier layer, and forming a second liner layer over the first liner layer, such that the first liner layer and the second liner layer intermix. A conductive material layer is formed over the combined liner layer, and a thermal process is performed to reflow the conductive material layer.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Huei-Wen Hsieh, Kai-Shiang Kuo, Cheng-Hui Weng, Chun-Sheng Chen, Wen-Hsuan Chen
  • Patent number: 11854980
    Abstract: A method of forming a semiconductor device, comprising: forming a first conductive layer on an active device of a substrate; forming a dielectric layer on the first conductive layer; forming a through hole passing through the dielectric layer to expose a portion of the first conductive layer; conformally depositing a glue layer in the through hole to cover the portion of the first conductive layer comprising: forming a plurality of isolated lattices in an amorphous region at which the isolated lattices are uniformly distributed and extend from a top surface of the glue layer and terminate prior to reach a bottom of the glue layer, wherein the glue layer has a predetermined thickness; depositing a conductive material on the glue layer within the through hole, thereby forming a contact via; and forming a second conductive layer on the contact via over the first conductive layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Lu, Jung-Chih Tsao, Yao-Hsiang Liang, Chih-Chang Huang, Han-Chieh Huang
  • Patent number: 11823989
    Abstract: A method includes etching a substrate to form an opening, depositing a first dielectric liner extending into the opening, and depositing a second dielectric liner over the first dielectric liner. The second dielectric liner extends into the opening. A conductive material is filled into the opening. The method further includes performing a first planarization process to planarize the conductive material so that a portion of the conductive material in the opening forms a through-via, performing a backside grinding process on the substrate until the through-via is revealed from a backside of the substrate, and forming a conductive feature on the backside of the substrate. The conductive feature is electrically connected to the through-via.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Fa Chen, Chin-Shyh Wang, Chao-Wen Shih
  • Patent number: 11810915
    Abstract: Disclosed is a semiconductor package including: a redistribution substrate; at least one passive device in the redistribution substrate, the passive device including a first terminal and a second terminal; and a semiconductor chip on a top surface of the redistribution substrate, the semiconductor chip vertically overlapping at least a portion of the passive device, wherein the redistribution substrate includes: a dielectric layer in contact with a first lateral surface, a second lateral surface opposite to the first lateral surface, and a bottom surface of the passive device; a lower conductive pattern on the first terminal; a lower seed pattern provided between the first terminal and the conductive pattern, and directly connected to the first terminal; a first upper conductive pattern on the second terminal and a first upper seed pattern provided between the second terminal and the first upper conductive pattern, and directly connected to the second terminal.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 7, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyoung Lim Suk, Seokhyun Lee, Jaegwon Jang
  • Patent number: 11812605
    Abstract: A semiconductor structure includes a semiconductor substrate and a gate structure embedded in the semiconductor substrate. The gate structure includes a gate electrode layer, a barrier layer disposed over the gate electrode layer, and a semiconductor layer disposed over the barrier layer. The semiconductor structure also includes an air gap in the semiconductor substrate and exposing the barrier layer and the semiconductor layer.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: November 7, 2023
    Assignee: WINBOND ELECTRONICS CORP.
    Inventor: Chang-Hung Lin
  • Patent number: 11798885
    Abstract: A copper pillar bump structure on a copper pillar on a metal pad of a semiconductor device and a method of fabricating thereof are disclosed. The copper pillar bump structure includes: a metal barrier layer formed on the copper pillar. The metal barrier layer has a U-shaped cross section, a central portion of the metal barrier layer covers the top surface of the copper pillar, an opening of the U-shaped cross section faces away from the copper pillar. The copper pillar bump structure further includes a solder layer on the copper pillar and filling the U-shaped cross section. The copper pillar bump structure provides a metal barrier layer having a U-shaped cross section and fills a solder layer in the U-shaped cross section, the metal barrier layer wraps sides of the solder layer, which can improve the non-wetting problem caused by insufficient tin, or the solder bridging problem caused by excessive solder, during a flip die soldering process.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Changxin Memory Technologies, Inc.
    Inventors: Ling-Yi Chuang, Dingyou Lin