Patents Examined by Timothy A. Brainard
  • Patent number: 11131767
    Abstract: Systems and methods according to one or more embodiments are provided for mapping and registration of synthetic aperture raw radar data to aid in SAR-based navigation. In one example, a SAR-based navigation system includes a memory including executable instructions and a processor adapted to receive phase history data associated with observation views of a scene. The processor further converts the received phase history data associated with the observation views to a range profile of the scene. The range profile is compared to a range profile template of the scene to estimate a geometric transformation of the scene encoded in the received phase history data with respect to a reference template.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: September 28, 2021
    Assignee: The Boeing Company
    Inventors: Kang-Yu Ni, Shankar Rao, Brian Limketkai
  • Patent number: 11131742
    Abstract: A system is provided that includes multiple analog-to-digital converters (ADCs), multiple antennas, and one or more processors. The one or more processors are configured, in a first mode of operation, to receive from the multiple ADCs samples of emissions received by one of the antennas and identify a signal of interest. The one or more processors are configured, in a second mode of operation, receive from the multiple ADCs samples of emissions received by the multiple antennas and identify an angle of arrival for the signal of interest.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: September 28, 2021
    Assignee: Raytheon Company
    Inventors: Ian S. Robinson, Bradley Flanders
  • Patent number: 11125856
    Abstract: An apparatus, including processing unit (PU) cores and computer readable storage devices storing machine instructions for determining a distance between a target object and a radar sensor circuit. The PU cores receive a beat signal generated by the radar sensor circuit and compensate for a phase difference between the received beat signal and a reconstruction of the received beat signal to obtain a phase compensated beat signal. The phase compensated beat signal is then filtered to remove spurious reflections by demodulating the phase compensated beat signal using an estimated frequency of the phase compensated beat signal. The PU cores then apply a low pass filter to the demodulated phase compensated beat signal, resulting in a modified beat signal. The PU cores then determine the distance between the target object and the radar sensor circuit using the modified beat signal.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 21, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Muhammad Zubair Ikram, Adeel Ahmad, Dan Wang, Murtaza Ali
  • Patent number: 11125873
    Abstract: Systems, methods, and computer-readable media are described using radar systems to avoid vehicle collisions. An example radar system can include antennas mounted on an aircraft, where each antenna has a different orientation facing a different direction away from the aircraft. The radar system can include one or more processing devices and a computer-readable storage medium storing instructions which, when executed by the one or more processing devices, cause the radar system to coordinate digital beam steering and digital beam forming with the antennas to produce a radar coverage area that includes a portion of an airspace around the aircraft; detect, based a signal transmitted by the antennas using the digital beam steering and digital beam forming, an object within the radar coverage area; and generate collision avoidance information including an indication of the object detected within the radar coverage area and/or an instruction for avoiding a collision with the object.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: September 21, 2021
    Assignee: FORTEM TECHNOLOGIES, INC.
    Inventors: Adam Eugene Robertson, Matthew Robertson Morin, Bryan Alan Davis, Bruce Alexander Carpenter, Matthew Elliott Argyle, James David Mackie, Eric Richard Grover, Brandon Robert Hicks, David Preece, Mikko Valimaki
  • Patent number: 11119204
    Abstract: Systems and methods include emitting transmit signals from two or more non-coherent radar systems. A method also includes receiving reflected signals at the two or more non-coherent radar systems based respectively on the transmit signals from each of the two or more non-coherent radar systems being reflected by one or more objects. The non-coherent radar systems exhibit an uncorrelated phase relationship in the reflected signals received at each of the two or more non-coherent radar systems. The reflected signals are processed to obtain a joint metric that is used to identify and estimate an angle to each of the one or more objects.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: September 14, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oded Bialer, Amnon Jonas
  • Patent number: 11119203
    Abstract: To provide a radar device capable of improving azimuth estimation accuracy by compensating the Doppler phase shift of a moving target in a TDMA FMCW MIMO radar device. Provided is a radar device that allows transmitting antennas to perform transmission by performing sequential switching such that antenna element numbers are anterior-posterior symmetrical centering on a reference time and synthesizes a beat signal at the reference time from a first beat signal received by a receiving antenna before the reference time and a second beat signal received after the reference time.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: September 14, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Sachio Iida, Kenichi Kawasaki
  • Patent number: 11119187
    Abstract: A system and method to resolve ambiguity in a radar system involve detecting one or more objects with the radar system. The detecting includes obtaining range, azimuth, and an ambiguous range rate of a first object of the one or more objects. A plurality of Kalman filters are generated with state variables that include parameters based on the range, the azimuth, and the ambiguous range rate. Each of the plurality of Kalman filters provides a different estimate for an unambiguous range rate. The method also includes updating the plurality of Kalman filters using additional detections by the radar system, selecting a selected Kalman filter from among the plurality of Kalman filters that exhibits a highest probability mass among a plurality of probability mass corresponding with and derived from the plurality of Kalman filters, and determining the unambiguous range rate of the object using the selected Kalman filter.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: September 14, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shuqing Zeng, Igal Bilik, Yasen Hu
  • Patent number: 11112488
    Abstract: A method for operating a radar sensor device, for example of a motor vehicle, including a plurality of transmitting antenna elements and a plurality of receiving antenna elements, where at least a part of the antenna elements are situated along an arc and/or intersecting planes and where the antenna elements are divided into a plurality of antenna systems that each includes at least two of the transmitting antenna elements and at least two of the receiving antenna elements, includes: operating each of the antenna systems as an independent multiple-input-multiple-output radar system, the operating including: transmitting transmit signals using the transmitting antenna elements that are of first and second ones of the antenna systems, whose transmission ranges overlap and whose transmit signals are orthogonal to one another; and receiving reflections of the transmitted transmit using the receiving antenna elements.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 7, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Armin Himmelstoss, Thomas Binzer, Thomas Brosche
  • Patent number: 11108163
    Abstract: A periodic type leaky wave antenna, formed, e.g. on a printed circuit board, using cells of a filled circular structure. The leaky wave antenna may be formed in a series fed patch configuration. In order to achieve a high quality factor with respect to high frequency sensitive beam, a circular patch structure may be used, giving the best area to perimeter ratio. The cavity model based design considerations yield a proportional Q-factor expression with respect to the geometrical ratio. The antenna design takes into consideration effects such as degradation at broadside and circular polarisation, as well as input reflection coefficient. The tuning of a delay loop length yields a simple optimization criterion in order to achieve Q-balancing, circular polarisation and a matched configuration.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: August 31, 2021
    Assignee: IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A.
    Inventors: Christian Hammes, Andreas Diewald
  • Patent number: 11105920
    Abstract: A bicycle radar system including a camera is disclosed. The system may include a radar unit and a bicycle computing device that are in communication with one another. The radar unit may transmit radar signals, receive return signals (reflections), and process the returned radar signals to determine a location and velocity of one or more targets located in a sensor field behind a user's bicycle. The radar unit may also include an integrated camera to selectively provide images or video of an area behind the bicycle in the camera's field of view. The radar unit may analyze the returned radar signals and images and/or video to track the location of targets located behind the bicycle. The bicycle computing device or the radar unit may also selectively activate the camera based upon the satisfaction of particular conditions.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 31, 2021
    Inventors: Evangelos V. A. Brisimitzakis, Ross G. Stirling, Kenneth A. Carlson, Franz A. Struwig, Nolan van Heerden
  • Patent number: 11105896
    Abstract: A method and apparatus for detecting and estimating the dimension of a trailer are presented. The method includes: capturing information on surrounding static infrastructure; determining the existence of a trailer based upon the captured information on the surrounding static infrastructure. When it is determined that a trailer is present, the method further includes: filtering detections associated with the existence of the trailer; identifying one or more regions on a trailer based upon the filtered detections, the regions corresponding to repeated reflections having an amplitude equal to or greater than a predetermined amplitude threshold with a substantially constant range relative to a fixed origin; and determining at least one of a width, length, and height of the trailer based on the identified regions.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: August 31, 2021
    Assignee: Valeo Radar Systems, Inc.
    Inventor: David Insana
  • Patent number: 11099268
    Abstract: A vehicle, radar system for the vehicle and method of operating the vehicle is disclosed. The radar system includes a transmitter, a receiver and a processor. The transmitter transmits a source signal into a region proximate the vehicle. The receiver receives a reflected signal formed by reflection of the source signal from an object in the region. The processor obtains non-linear terms of a phase from the reflected signal and resolves a Doppler ambiguity of the object using the non-linear terms. A navigation system navigates the vehicle with respect to the object based on the resolved Doppler ambiguity.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 24, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael Dikshtein, Igal Bilik, Shahar Villeval, Oren Longman
  • Patent number: 11092668
    Abstract: A detection system includes a ranging sensor and a controller circuit. The ranging sensor is configured to detect range rates of objects proximate a host vehicle. The controller circuit is in communication with the ranging sensor. The controller circuit is configured to determine a search area extending from the host vehicle. The controller circuit is further configured to determine a first histogram comprising counts of occurrences of the range rates detected within the search area. The controller circuit is further configured to determine a second histogram comprising the counts of occurrences of a portion of the range rates detected within the search area. The controller circuit is further configured to determine that a trailer is being towed by the host vehicle based on the first histogram and the second histogram.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: August 17, 2021
    Assignee: Aptiv Technologies Limited
    Inventors: Yu Wang, Yang Wang, Liang Ma
  • Patent number: 11079474
    Abstract: A device for generating and/or processing a signal, and a method for ascertaining an adjustment of a device for processing or generating a signal. The method includes the steps: generating a transmission signal or a test signal with the aid of a signal device of a device; separating first signals, which come to the signal device from an interface device of the device, from second signals which come to the interface device from the signal device, the interface device being coupleable or coupled to a transmitting and/or receiving antenna; and outputting the first and the second signals separately from one another.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: August 3, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Steinbuch, Karin Moertlbauer, Matthias Steinhauer, Michael Ott
  • Patent number: 11080974
    Abstract: A selective intrusion detection system includes a Doppler transceiver configured and adapted to receive Doppler return signals indicative of moving targets present in a surveillance space. A processor is operatively connected to the Doppler transceiver to convert Doppler return signals into spectrograms and to determine whether any given spectrogram is indicative of presence of a human or another moving target, like a domestic pet. An alarm is operatively connected to the processor, wherein the processor and alarm are configured to provide an alert in the event the processor determines any given spectrogram is indicative of a human, and to forego providing an alert in the event the processor determines any given spectrogram is indicative of another moving target only.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: August 3, 2021
    Assignee: UTC Fire & Security Americas Corporation, Inc.
    Inventors: Mathias Pantus, Jeroen te Paske, Pascal van de Mortel, Leon Mintjens, Sorin Costiner, Michael Giering, Robert Labarre, Mark Vogel, Vijaya R. Lakamraju
  • Patent number: 11079471
    Abstract: A transceiver for a detection and ranging apparatus comprising: a transmitter chain comprising a first sequence generator configured to generate a first signal based on a digital sequence; an interference cancellation block comprising a second sequence generator configured to generate a second signal based on the same digital sequence used to generate the first signal, the second signal having a predetermined time delay relative to the first signal; and the receiver chain configured to receive a received signal for detection and ranging, the received signal having components comprising at least none, one, or more reflections of the transmission signal and a component comprising an interference signal, the receiver chain comprising a first analog signal mixer configured to provide an output signal by mixing the received signal and the second signal thereby cancelling the interference signal in the received signal.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: August 3, 2021
    Assignee: NXP USA, INC.
    Inventors: Gustavo Guarin Aristizabal, Ralf Reuter, Maik Brett
  • Patent number: 11067665
    Abstract: An aircraft radar assembly (200) comprising: a radome (202); a radar antenna (100) housed within the radome (202), the radar antenna (100) having a surface for transmitting and/or receiving radar waves; and rotation means (204) configured to rotate the radar antenna (100) within the radome (202) about an axis of rotation (206); wherein the surface is oblique to the axis of rotation (206).
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: July 20, 2021
    Inventor: Paul Edward William Marshall
  • Patent number: 11061129
    Abstract: The distance estimation device acquires distances from a movable body at a first time and a second time to two ground objects, respectively, and acquires a distance between the two ground objects. Then, the distance estimation device calculates a moving distance of the movable body from the first time to the second time based on the acquired results. Thus, the distance estimation device calculates the moving distance of the movable body using arbitrary ground objects measurable from the movable body.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: July 13, 2021
    Assignee: PIONEER CORPORATION
    Inventors: Ryoko Niihara, Masahiro Kato, Hitoshi Kaneko
  • Patent number: 11061108
    Abstract: In one embodiment, a police activity detector is provided. The detector includes a receiver section and a warning section. The receiver section is configured to receive signals generated in the context of law enforcement activity. The warning section is configured to respond to a pulsed signal received by the receiver section and provide an alert if a received signal correlates to a law enforcement signal.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 13, 2021
    Assignee: Escort Inc.
    Inventor: Steven K. Orr
  • Patent number: 11061109
    Abstract: In a radar device (1), when a distance determined based on a range of fields of view required of the radar device (1) is defined as a distance d, transmission antennas (Tx) are arranged side by side with an antenna interval that is larger than the distance d in a first array direction, which is perpendicular to an emission direction of a transmission signal, reception antennas (Rx) are arranged side by side at antenna intervals that are larger than the distance d in a second array direction, which is parallel to the first array direction, and the transmission antennas (Tx) and the reception antennas (Rx) form virtual reception antennas (VR), which have an antenna arrangement including at least one part in which a virtual antenna interval is the distance d or less.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 13, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yuichi Goda