Patents Examined by Timothy Meeks
  • Patent number: 8383207
    Abstract: A tire dressing system includes an imaging device that captures an image of a vehicle tire or portion thereof and at least one application device that applies tire dressing to the tire based on the captured image. The system determines one or more tire parameters based on the captured image. The tire dressing system configures the at least one application device based on the tire parameter(s) such that the application device substantially restricts application of tire dressing to within the boundaries of the tire sidewalls. By determining the tire parameters, the tire dressing system may apply the tire dressing to the tire sidewalls while reducing or minimizing application of tire dressing to the body or rims of the vehicle.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 26, 2013
    Assignee: ZEP IP Holding LLC
    Inventors: David J. Falbaum, Darren M. Jahnke, Paul R. Kraus, Paul S. Schilling, Mark Lorenz
  • Patent number: 8367148
    Abstract: Methods for making collagen based biocomposite constructs and related devices include: (a) winding at least one collagen fiber a number of revolutions about a length of a support member having a long axis, the winding having at least one defined pitch and/or fiber angle relative to the long axis of the support member to form an elongate construct; and (b) applying a fluid polymeric material, such as, for example, an acrylate emulsion and/or other thermoplastic material, onto the collagen fiber during the winding step. Optionally, the fluid polymeric material can include antibiotics and/or other therapeutic agents for additional function/utility.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: February 5, 2013
    Assignee: MiMedx Group, Inc.
    Inventors: Kerriann Greenhalgh, Mengyan Li, Thomas J. Koob
  • Patent number: 8367149
    Abstract: A method of coating a stent may comprise applying a composition including a drug and a polymer to the stent to form a coating. The release rate of the drug from the coating gradually increases along a length of the stent which extends axially from opposite ends of the stent. The variable drug release rate can be accomplished by varying the coating thickness, by applying a barrier region over the drug-containing composition, and/or by having different polymers in the coating, the polymers having different drug permeabilities.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: February 5, 2013
    Assignee: Advanced Cardiovascular System, Inc.
    Inventors: Veronica J. Santos, Santosh Prabhu
  • Patent number: 8367164
    Abstract: Disclosed is a method for manufacturing a template for a high-density patterned medium and a high-density magnetic storage medium using the same. In the method, magnetic particles are used as a mask and no lithographic process is required.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 5, 2013
    Assignee: Seagate Technology International
    Inventors: Hae-sung Kim, Myung Bok Lee, Jin Seung Sohn
  • Patent number: 8361558
    Abstract: A coating process wherein a precoated automotive substrate is OEM clear coated with a two-component polyurethane clear coat composition prepared by static mixing a binder component having a solids content of 42 to 50 wt.-% comprising at least one hydroxyl-functional binder and a volatile organic content of 50 to 58 wt.-% and a polyisocyanate crosslinker component having a solids content comprising a free polyisocyanate solids content consisting of 75 to 100 wt.-% of at least one polyisocyanate of the 1,6-hexane diisocyanate isocyanurate type and of 0 to 25 wt.-% of at least one polyisocyanate of the isophorone diisocyanate isocyanurate type, wherein the sum of the respective wt.-% in each case totals 100 wt.-%.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: January 29, 2013
    Assignee: E I Du Pont De Nemours and Company
    Inventors: Fabian Koehn, Andreas Benfer, Birte Bannert
  • Patent number: 8361537
    Abstract: An expandable medical device has a plurality of elongated struts joined together to form a substantially cylindrical device, which is expandable from a cylinder having a first diameter to a cylinder having a second diameter. At least one of the plurality of struts includes at least one opening extending at least partially through a thickness of the strut. A beneficial agent is loaded into the opening within the strut in layers to achieve desired temporal release kinetics of the agent. Alternatively, the beneficial agent is loaded in a shape which is configured to achieve the desired agent delivery profile. A wide variety of delivery profiles can be achieved including zero order, pulsatile, increasing, decrease, sinusoidal, and other delivery profiles.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 29, 2013
    Inventor: John F. Shanley
  • Patent number: 8361541
    Abstract: The subject matter disclosed herein provides methods for manufacturing an electronic lapping guide and a magnetic read head assembly. The magnetoresistive head assembly includes a sensing element that has a front edge and a front flux guide that has a back edge, such that the sensing element front edge and the front flux guide back edge share a common interface that defines an interface plane normal to the surface of a wafer substrate. The electronic lapping guide comprises a conductive material adapted to attach to two electrical leads for measuring a resistance through the conductive material. The conductive material may include a conductive material back edge aligned with the interface plane. The resistance of the conductive material may be inversely proportional to a conductive material length normal to the interface plane.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: January 29, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Edward Hin Pong Lee, David John Seagle
  • Patent number: 8357435
    Abstract: Methods of depositing and curing a dielectric material on a substrate are described. The methods may include the steps of providing a processing chamber partitioned into a first plasma region and a second plasma region, and delivering the substrate to the processing chamber, where the substrate occupies a portion of the second plasma region. The methods may further include forming a first plasma in the first plasma region, where the first plasma does not directly contact with the substrate, and depositing the dielectric material on the substrate to form a dielectric layer. One or more reactants excited by the first plasma are used in the deposition of the dielectric material. The methods may additional include curing the dielectric layer by forming a second plasma in the second plasma region, where one or more carbon-containing species is removed from the dielectric layer.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: January 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Qiwei Liang, Jang Gyoo Yang
  • Patent number: 8357434
    Abstract: A method for depositing a conformal film on a substrate in a plasma processing chamber of a plasma processing system, the substrate being disposed on a chuck, the chuck being coupled to a cooling apparatus, is disclosed. The method includes flowing a first gas mixture into the plasma processing chamber at a first pressure, wherein the first gas mixture includes at least carbon, and wherein the first gas mixture has a condensation temperature. The method also includes cooling the chuck below the condensation temperature using the cooling apparatus thereby allowing at least some of the first gas mixture to condense on a surface of the substrate. The method further includes venting the first gas mixture from the processing chamber; flowing a second gas mixture into the plasma processing chamber, the second gas mixture being different in composition from the first gas mixture; and striking a plasma to form the conformal film.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: January 22, 2013
    Assignee: Lam Research Corporation
    Inventors: Dae-han Choi, Jisoo Kim, Eric Hudson, Sangheon Lee, Conan Chiang, S. M. Reza Sadjadi
  • Patent number: 8354143
    Abstract: A capacitive touch screen and method of manufacturing such a touch screen includes providing a substrate and coating a surface of the substrate with a transparent conductive coating. An uncured conductive electrode material, such as an uncured silver epoxy material or an uncured silver or equivalent conducting metallic paste material, is disposed at least over a portion of the transparent conductive coating to establish a precursor of at least one metallic electrode at the substrate surface. A precursor of a protective hardcoat is established at least over the transparent conductive coating and/or the metallic electrode. Such precursor/undercured/uncured layers are then cured via a single common curing/firing process, which may heat the substrate and coatings to an elevated temperature, such as at about 500 degrees Celsius or above.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: January 15, 2013
    Assignee: TPK Touch Solutions Inc.
    Inventors: Eugene L. Halsey, IV, Mondher Cherif
  • Patent number: 8349401
    Abstract: A method for using a film formation apparatus includes performing a main cleaning process and a post cleaning process in this order inside a reaction chamber. The main cleaning process is arranged to supply a cleaning gas containing fluorine into the reaction chamber while exhausting gas from inside the reaction chamber, thereby etching a film formation by-product containing silicon. The post cleaning process is arranged to remove a silicon-containing fluoride generated by the main cleaning process and remaining inside the reaction chamber and to alternately repeat, a plurality of times, supplying an oxidizing gas into the reaction chamber to transform the silicon-containing fluoride into an intermediate product by oxidization, and supplying hydrogen fluoride gas into the reaction chamber while exhausting gas from inside the reaction chamber to remove the intermediate product by a reaction between the hydrogen fluoride gas and the intermediate product.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 8, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Sato, Kiyotaka Kikuchi, Hiroki Murakami, Shigeru Nakajima, Kazuhide Hasebe
  • Patent number: 8349388
    Abstract: A stent mounting device and a method of coating a stent using the device are provided. The mandrel is made from or is coated with a hydrophobic or hydrophilic material, depending on the type of coating composition that is employed.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: January 8, 2013
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Philip S. Yip, Fuh-Wei Tang, Anthony Andreacchi
  • Patent number: 8349389
    Abstract: A stent fixture for supporting a stent during the application of a coating substance is provided.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: January 8, 2013
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Nathan Harold, Antonio Garcia, Andrew Tochterman
  • Patent number: 8343581
    Abstract: An improved method of synthesizing nanotubes that avoids the slow process and the impurities or defects that are usually encountered with regard to as-grown carbon nanotubes. In a preferred embodiment, nanotubes are synthesized from nanotubes providing a novel catalyst-free growth method for direct growth of single- or multi-walled, metallic or semiconducting nanotubes.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: January 1, 2013
    Assignee: Regents of the University of California
    Inventors: Peter J. Burke, Zhen Yu
  • Patent number: 8343586
    Abstract: The present invention relates to a conductive polishing pad and a method for making the same. The conductive polishing pad includes a bottom layer, a conductive film and a polishing layer. The bottom layer includes a first high polymer and a fiber base. The first high polymer covers the fiber base, and has a plurality of first holes. The conductive film is disposed on the bottom layer. The polishing layer is disposed on the conductive film, and includes a second high polymer. The second high polymer has a plurality of second holes. Even though the bottom layer and the polishing layer are poor conductors, the conductivity thereof is raised by the conductive film, so that the polishing pad has good conductivity. Further, the polishing pad has a flexible surface, which prevents a surface of a workpiece to be polished from being scratched during polishing.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: January 1, 2013
    Assignee: Bestac Advanced Material Co., Ltd.
    Inventors: Chung-Chih Feng, I-Peng Yao, Yung-Chang Hung, Chun-Ta Wang
  • Patent number: 8337936
    Abstract: The present invention proposes a method for manufacturing an implant, in particular an intraluminal endoprosthesis, having a body such that the body has metallic material. To control the degradation in a desired time window, e.g., between four weeks and six months, the following production method is performed: a) preparing the body of the implant, and b) plasma-chemical treatment of at least a portion of the surface of the body in an aqueous solution by applying a plasma-generating electric alternating voltage to the body (5) of the implant, said voltage having a frequency of at least approximately 1 kHz, to create a first layer. The invention also relates to an implant obtainable by such a method.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: December 25, 2012
    Assignee: Biotronik VI Patent AG
    Inventors: Ullrich Bayer, Jan Schettler, Guenter Ewert
  • Patent number: 8334023
    Abstract: Methods for operating a material dispensing system. The method includes measuring numerical values of an operating parameter, such as line velocity, material pressure, or material temperature, of the dispensing system to predict a future numerical value of the operating parameter. The predicted numerical value of the operating parameter is used to accurately define a start time, which is measured from the detection of the presence of a workpiece being transported past an applicator of the dispensing system, at which to initiate dispensing of the material from the applicator. A calibration procedure is provided for deriving a mathematical relationship used to determine the predicted numerical value of the operating parameter.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: December 18, 2012
    Assignee: Nordson Corporation
    Inventors: Martin Gaon, Steven Julian
  • Patent number: 8334012
    Abstract: A first fluid, e.g., a clear solvent, is printed in a subpixel of a color filter prior to printing droplets of a second fluid such as colored liquid into the subpixel areas. This first fluid could have surface wetting properties such that it is hydrophilic to the substrate (glass) but hydrophobic to the boundary (black matrix). Therefore, the first fluid would flow over the entire subpixel area, but not onto the black matrix. The first fluid would then allow color fluid to disperse uniformly throughout the subpixel. This first fluid may also be used in additional embodiments to re-liquify a dry or partially dry color subpixel, so that color non-uniformities can be corrected.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: December 18, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventor: John S. Fitch
  • Patent number: 8329249
    Abstract: Although dots and servo patterns are made of the same magnetic material, the dots have a relatively low coercive force so as to allow data deletion and rewrite by a magnetic head, while the servo patterns have a high coercive force compared with the coercive force of the dots. The coercive force of the servo patterns is strong enough so as to eliminate the influence of shape magnetic anisotropy.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 11, 2012
    Assignee: Fujitsu Limited
    Inventor: Hiroto Takeshita
  • Patent number: 8329256
    Abstract: The invention relates to a process and a device for the production of mouldings containing a layer of polyurethane in shot operation, in which a gas stream is introduced into the flow channel of the spray device in at least two positions.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: December 11, 2012
    Assignee: Hennecke GmbH
    Inventors: Wolfgang Pawlik, Dominik Obeloer, Ingo Kleba