Patents Examined by Timothy Meeks
  • Patent number: 8287946
    Abstract: Conventional techniques for forming ultraviolet- or infrared-screening coating films have the problem of requiring several recoating steps in order to attain a desired coating weight and therefore failing in forming high-strength coating films and the problem of causing uneven coating, mottling, spotting, blushing, partial breakage, or cracking in some working atmospheres. In order to solve the problems, a coating fluid comprising at least an ultraviolet-screening agent and/or an infrared-screening agent, a binder and a polyhydric alcohol base solvent and having a polyhydric alcohol content of 50 to 95 wt % is applied to a substrate with a coater whose ejection nozzle has a tip diameter of 0.5 to 3.0 mm and which is equipped with a blower for forming an air curtain at an ejection pressure of the nozzle of 0.01 to 0.098 MPa and then dried to form a film containing an ultraviolet-screening agent and/or an infrared-screening agent on the surface of the substrate.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: October 16, 2012
    Assignee: Fumin Corporation
    Inventor: Katsuo Yagisawa
  • Patent number: 8287937
    Abstract: A coating having a smooth orange peel morphology is formed on an adluminal surface of a stent, concurrently with the formation of a coating having a rough rice grain morphology on an abluminal surface of the stent. During the formation of the two coatings, a mandrel is placed adjacent to the adluminal surface of the stent but does not generally contact the adluminal surface.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 16, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Rajesh Radhakrishnan, Scott R. Schewe, Victor Schoenle
  • Patent number: 8282983
    Abstract: Apparatus and methods to minimize wafer-to-wafer process variation in RF-based semiconductor processing reactors with shared RF source for multiple processing areas. RF sensors associated with each processing area sends signal to the RF balance controller. The controller modifies station impedance using power adjustment mechanisms. As a result, station to station distribution of a selected RF parameter (e.g., load power) may match the station set points. Closed loop control maintains balance despite changing conditions.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 9, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Sunil Kapoor, Edward Augustyniak
  • Patent number: 8282980
    Abstract: A nozzle for use in a coating apparatus for the application of a coating substance to a stent is provided. Method for coating a stent can include discharging a coating composition out from a needle of a nozzle assembly, and atomizing the coating composition as the coating composition is discharged. The needle can be positioned in a chamber of the nozzle assembly, and gas can be introduced into the chamber for atomizing the coating composition.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 9, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Yung-Ming Chen, Stephen James Guittard, Joe Broeckert
  • Patent number: 8282984
    Abstract: A processing condition inspection method of a damage recovery process for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas includes preparing a substrate having an OH group containing resin film, measuring an initial film thickness of the OH group containing resin film, performing a damage recovery process on the substrate after measuring the initial film thickness, measuring a film thickness of the OH group containing resin film after the damage recovery process, calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process, and determining whether processing conditions of the damage recovery process are appropriate or inappropriate based on the film thickness difference.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: October 9, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Reiko Sasahara, Jun Tamura, Shigeru Tahara
  • Patent number: 8277868
    Abstract: A drug delivery device for delivering therapeutic agents and a method of making such a device is disclosed. The device includes an inflatable balloon. A microporous coating covers a portion of the outer surface of the wall of the balloon. The thickness of the coating and the size of the micropores can permit desirable delivery of a substance from the micropores of the coating and into the tissue of a patient's lumen.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: October 2, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Lyudmila Kokish, Stephen D. Pacetti, John Stankus
  • Patent number: 8277901
    Abstract: In the condition where a nozzle for applying a coating liquid is disposed on the lower side of a substrate and a substrate surface controlled in wettability is faced down, the nozzle and the substrate are moved relative to each other, whereby the coating liquid is applied to a desired region of the substrate, and then the coating liquid is dried, to obtain a pattern included a dried coating layer.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 2, 2012
    Assignee: Sony Corporation
    Inventor: Akihiro Nomoto
  • Patent number: 8277877
    Abstract: A method for depositing protective coatings on front and rear facets of an optical device, such as a laser die, is disclosed. The protective coatings help prevent laser facet damage common to laser dies manufactured using known processes. In one embodiment, the method for coating the laser die includes placing the laser in an evacuated coating chamber before applying a first coating portion to a first facet of the laser. The first coating portion is applied to the first facet so as to form a protective covering thereon, but is applied at a coating energy that minimizes damage to the as-yet uncoated second facet. The laser is then rotated within the coating chamber, and a full coating is applied to a second facet of the laser. The laser is again rotated, and a full coating is applied atop the first coating portion to the first facet of the laser.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: October 2, 2012
    Assignee: Finisar Corporation
    Inventors: Roman Dimitrov, Ashish Verma, Tsurugi Sudo, Scott Lehmann
  • Patent number: 8277900
    Abstract: In the condition where a nozzle for applying a coating liquid is disposed on the lower side of a substrate and a substrate surface controlled in wettability is faced down, the nozzle and the substrate are moved relative to each other, whereby the coating liquid is applied to a desired region of the substrate, and then the coating liquid is dried, to obtain a pattern included a dried coating layer.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 2, 2012
    Assignee: Sony Corporation
    Inventor: Akihiro Nomoto
  • Patent number: 8277893
    Abstract: A chemical vapor deposition apparatus which comprises a susceptor for mounting a substrate thereon, a heater for heating the substrate, a feed gas introduction portion and a reaction gas exhaust portion, wherein a light transmitting ceramics plate held or reinforced by means of a supporting member is equipped between the heater and a mounting position of the substrate. A chemical vapor deposition apparatus that is capable of forming film stably for a long time without giving a negative influence on a quality of semiconductor film even in a case of chemical vapor deposition reaction employing a furiously corrosive gas with an elevated temperature for producing a gallium nitride compound semiconductor or so was realized.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 2, 2012
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Tatsuya Ohori, Kazushige Shiina, Yasushi Iyechika, Noboru Suda, Yukichi Takamatsu, Yoshiyasu Ishihama, Takeo Yoneyama, Yoshinao Komiya
  • Patent number: 8277876
    Abstract: A UV camouflage system for effectively camouflaging an individual or structure with respect to birds. The UV camouflage system generally includes identifying a landscape pattern for camouflage, identifying the color and UV reflection properties of the landscape pattern, and printing a UV camouflage pattern on an item that emulates the color and UV reflection properties of the landscape pattern.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 2, 2012
    Assignee: Reel Wings Decoy Company, Inc.
    Inventor: Scott A. Butz
  • Patent number: 8273407
    Abstract: A method of fabricating a film of magnetic nanocomposite particles including depositing isolated clusters of magnetic nanoparticles onto a substrate surface and coating the isolated clusters of magnetic nanoparticles with an insulator coating. The isolated clusters of magnetic nanoparticles have a dimension in the range between 1 and 300 nanometers and are separated from each other by a distance in the range between 1 and 50 nanometers. By employing PVD, ablation, and CVD techniques the range of useful film thicknesses is extended to 10-1000 nm, suitable for use in wafer based processing. The described methods for depositing the magnetic nanocomposite thin films are compatible with conventional IC wafer and Integrated Passive Device fabrication.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: September 25, 2012
    Inventors: Albert S. Bergendahl, Paul C. Castrucci, Daniel J. Fleming, Danny Tongsan Xiao
  • Patent number: 8273410
    Abstract: A process for manufacturing a hydrophobized microporous film includes: forming an organic silica insulating film 2 on a substrate 1; supplying a gaseous mixture 3 composed of a silylation gas and an inert gas in an apparatus having the substrate 1 disposed therein at a temperature of the substrate 1, the substrate 1 having the organic silica insulating film 2 formed thereon, and the temperature being equal to or higher than a dew point temperature of the silylation gas and equal to or lower than a vaporizing temperature of the silylation gas; stopping the supply of the gaseous mixture 3 into the apparatus; and heating the substrate having the organic silica insulating film 2 formed thereon, so that a hydrophobizing organic silica insulating film, in which the surface of the organic silica insulating film 2 and the surfaces of the pores are hydrophobized, can be obtained with reduced increase in the specific dielectric constant.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 25, 2012
    Assignees: Renesas Electronics Corporation, ULVAC Inc.
    Inventors: Shinichi Chikaki, Takahiro Nakayama
  • Patent number: 8268396
    Abstract: A method for film formation is provided that can significantly suppress the amount of a source gas consumed in the formation of a copper film on a substrate by supplying a gas of a metallic source material complex, for example, copper acetate, produced by the sublimation of a solid source material, as a source gas to the substrate to cause a chemical reaction of the source gas. A source gas produced by the sublimation of a solid source material is supplied into a processing chamber, and the source material is adsorbed as a solid onto an adsorption/desorption member within the processing chamber. Next, the source gas supply and exhaust are stopped, and the processing chamber is brought to the state of a closed space. Thereafter, the substrate is heated, and the source material is chemically reacted on the substrate to form a thin film on the substrate.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: September 18, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Hitoshi Itoh
  • Patent number: 8268381
    Abstract: A coating system and method are described. In some embodiments, a system may include a composition. The composition may include one or more bridged polycyclic compounds. At least one of the bridged polycyclic compounds may include at least two cyclic groups, and at least two of the cyclic groups may include quaternary ammonium moieties. In some embodiments, a method may include applying a coating to a surface of a medical device. The coating may be antimicrobial. A coating may include antimicrobial bridged polycyclic compounds. In some embodiments, bridged polycyclic compounds may include quaternary ammonium compounds. In some embodiments, bridged polycyclic compounds may include guanidinium moieties. Bridged polycyclic compounds based coating systems may impart self-cleaning properties to a surface.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: September 18, 2012
    Assignee: AllAccem, Inc.
    Inventors: Jeffery A. Whiteford, William P. Freeman
  • Patent number: 8268383
    Abstract: Medical implants exhibiting optimized mechanical properties, and methods of making such implants, are disclosed. That is, the implants are fabricated of a porous metal substrate and include coating integrated over various areas so as to provide some added or desirable property or functionality to the implant. In one embodiment, the implant is an acetabular implant with a coating applied to an internal, concave wear surface which is sized and configured to receive a head of a femur. Typically, the coating is a ceramic incorporated onto the desired area of the implant via electrophoretic deposition.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: September 18, 2012
    Assignee: Depuy Products, Inc.
    Inventor: Jason Langhorn
  • Patent number: 8263170
    Abstract: The present invention is directed to a medical device having a polymerized base coat layer for the immobilization of an anti-thrombogenic material, such as heparin, thereon. The binding coat layer is comprised of various chemically functional groups which are stable and allow for the immobilization of the anti-thrombogenic material thereto. Methods for immobilizing the anti-thrombogenic material within the base coat layer posited on a surface of the medical device are also provided.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 11, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Ni Ding, Christopher Buchko
  • Patent number: 8263193
    Abstract: A vacuum treatment method and a vacuum treatment apparatus are provided in which the SiH2/SiH ratio does not increase even when the deposition rate is increased, thereby deterioration in the film quality is prevented and a high level of productivity can be achieved. A vacuum treatment method comprising the steps of heating a substrate (8) disposed inside a deposition chamber (6) under a reduced pressure atmosphere using a heat spreader (a heating device) (5), and supplying electric power to a discharge electrode (3) disposed in a position facing the substrate (8), thereby conducting a deposition on the substrate (8), wherein the deposition is conducted in a state where the temperature difference between the substrate (8) and the discharge electrode (3) is not more than 30° C. The deposition may also be conducted with the gap between the substrate (8) and the discharge electrode (3) set to not more than 7.5 mm.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 11, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroomi Miyahara, Tatsuyuki Nishimiya
  • Patent number: 8263169
    Abstract: A stent mandrel fixture for supporting a stent during the application of a coating substance is provided.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: September 11, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Fuh-Wei Tang, Syed F. A. Hossainy, Dorie Happ, Ty T. Hu
  • Patent number: 8263191
    Abstract: There is described a method of producing color effect images on a carrier substrate, wherein it is provided that a latent magnetic image comprising magnetic pixels and non-magnetic pixels is produced on a magnetizable printing form, a carrier substrate with a decorative layer applied to the carrier substrate and provided with non-spherical, preferably needle-form or flake-form magnetic color effect pigments is moved past the magnetizable printing form so that color effect pigments of the decorative layer are changed in their orientation relative to the carrier substrate by the field line image produced by the magnetic pixels of the magnetizable printing form, and the color effect pigments are fixed in the decorative layer in the orientation which is changed by the field line image of the printing form. There is further described an apparatus for carrying out the method and a multi-layer body produced therewith.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: September 11, 2012
    Assignee: Leonhard Kurz Stiftung & Co. KG
    Inventor: Heinrich Wild