Patents Examined by Tong-Ho Kim
-
Patent number: 11659703Abstract: A semiconductor structure includes a substrate and first SRAM cells and second SRAM cells. Each first SRAM cell includes two first p-type FinFET and four first n-type FinFET. Each first p-type and n-type FinFET includes a channel in a single semiconductor fin. The first SRAM cells are arranged with a first X-pitch and a first Y-pitch. Each second SRAM cell includes two second p-type FinFET and four second n-type FinFET. Each second p-type FinFET includes a channel in a single semiconductor fin. Each second n-type FinFET includes a channel in multiple semiconductor fins. The second SRAM cells are arranged with a second X-pitch and a second Y-pitch. The source/drain regions of the first p-type FinFET have a higher boron dopant concentration than the source/drain regions of the second p-type FinFET. A ratio of the second X-pitch to the first X-pitch is within a range of 1.1 to 1.5.Type: GrantFiled: February 26, 2021Date of Patent: May 23, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventor: Jhon Jhy Liaw
-
Patent number: 11658246Abstract: A device comprises a vertical transistor. The vertical transistor comprises a pillar structure, at least one gate electrode, and a dielectric material. The pillar structure comprises a source region, a drain region, and a channel region. The source region and the drain region each individually comprise at least one electrically conductive material configured to inhibit hydrogen permeation therethrough. The channel region comprises a semiconductive material vertically between the source region and the drain region. The at least one gate electrode laterally neighbors the channel region of the semiconductive structure. The dielectric material is laterally between the semiconductive structure and the at least one gate electrode. Additional devices, and related electronic systems and methods are also disclosed.Type: GrantFiled: October 8, 2019Date of Patent: May 23, 2023Assignee: Micron Technology, Inc.Inventors: Kamal M. Karda, Ramanathan Gandhi, Yi Fang Lee, Haitao Liu, Durai Vishak Nirmal Ramaswamy, Scott E. Sills
-
Patent number: 11652103Abstract: The present disclosure provides a semiconductor device, a manufacturing method thereof, and an electronic device including the semiconductor device. According to an embodiment of the present disclosure, the semiconductor device may comprise: a substrate; a first device and a second device that are sequentially stacked on the substrate. Each of the first device and the second device comprises: a first source/drain layer, a channel layer, and a second source layer that are sequentially stacked from bottom to top, and a gate stack around at least a part of an outer periphery of the channel layer, wherein sidewalls of the respective channel layers of the first device and the second device extend at least partially along different crystal planes or crystal plane families.Type: GrantFiled: October 31, 2018Date of Patent: May 16, 2023Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventor: Huilong Zhu
-
Patent number: 11652140Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes first and second source/drain epitaxial features, a first gate electrode layer disposed between the first and second source/drain epitaxial features, third and fourth source/drain epitaxial features, a second gate electrode layer disposed between the third and fourth source/drain epitaxial features, fifth and sixth source/drain epitaxial features disposed over the first and second source/drain epitaxial features, and a third gate electrode layer disposed between the fifth and sixth source/drain epitaxial features. The third gate electrode layer is electrically connected to the second source/drain epitaxial feature. The structure further includes a seventh source/drain epitaxial feature disposed over the third source/drain epitaxial feature and an eighth source/drain epitaxial feature disposed over the fourth source/drain epitaxial feature.Type: GrantFiled: February 25, 2021Date of Patent: May 16, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Yi Chuang, Cheng-Ting Chung, Hou-Yu Chen, Kuan-Lun Cheng
-
Patent number: 11652143Abstract: Disclosed herein are IC structures, packages, and devices that include thin-film transistors (TFTs) integrated on the same substrate/die/chip as III-N devices, e.g., III-N transistors. In various aspects, TFTs integrated with III-N transistors have a channel and source/drain materials that include one or more of a crystalline material, a polycrystalline semiconductor material, or a laminate of crystalline and polycrystalline materials. In various aspects, TFTs integrated with III-N transistors are engineered to include one or more of 1) graded dopant concentrations in their source/drain regions, 2) graded dopant concentrations in their channel regions, and 3) thicker and/or composite gate dielectrics in their gate stacks.Type: GrantFiled: March 28, 2019Date of Patent: May 16, 2023Assignee: Intel CorporationInventors: Han Wui Then, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Samuel Jack Beach, Xiaojun Weng, Johann Christian Rode, Marko Radosavljevic, Sansaptak Dasgupta
-
Patent number: 11646342Abstract: The present disclosure relates to an imaging device and an electronic device that make it possible to obtain a better pixel signal. A photoelectric conversion part that converts received light into a charge; a holding part that holds a charge transferred from the photoelectric conversion part; and a light shielding part that shields light between the photoelectric conversion part and the holding part are provided. The photoelectric conversion part, the holding part, and the light shielding part are formed in a semiconductor substrate. The light shielding part of a transfer region that transfers the charge from the photoelectric conversion part to the holding part is formed as a non-penetrating light shielding part that does not penetrate the semiconductor substrate. The light shielding part other than the transfer region is formed as a penetrating light shielding part that penetrates the semiconductor substrate. The present technology is applicable to an imaging device.Type: GrantFiled: March 16, 2021Date of Patent: May 9, 2023Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATIONInventors: Yoshimichi Kumagai, Takashi Abe, Ryoto Yoshita
-
Patent number: 11640941Abstract: Embodiments of the present disclosure provide semiconductor device structures. In one embodiment, the semiconductor device structure includes a gate dielectric layer, a gate electrode layer in contact with the gate dielectric layer, a first self-aligned contact (SAC) layer disposed over the gate electrode layer, an isolation layer disposed between the gate electrode layer and the first SAC layer, and a first sidewall spacer in contact with the gate dielectric layer, the isolation layer, and the first SAC layer.Type: GrantFiled: February 25, 2021Date of Patent: May 2, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Sheng-Tsung Wang, Lin-Yu Huang, Cheng-Chi Chuang, Chih-Hao Wang
-
Patent number: 11637042Abstract: Self-aligned gate cutting techniques for multigate devices are disclosed herein that provide multigate devices having asymmetric metal gate profiles and asymmetric source/drain feature profiles. An exemplary multigate device has a channel layer, a metal gate that wraps a portion of the channel layer, and source/drain features disposed over a substrate. The channel layer extends along a first direction between the source/drain features. A first dielectric fin and a second dielectric fin are disposed over the substrate and configured differently. The channel layer extends along a second direction between the first dielectric fin and the second dielectric fin. The metal gate is disposed between the channel layer and the second dielectric fin. In some embodiments, the first dielectric fin is disposed on a first isolation feature, and the second dielectric fin is disposed on a second isolation feature. The first isolation feature and the second isolation feature are configured differently.Type: GrantFiled: February 11, 2021Date of Patent: April 25, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Guan-Lin Chen, Kuo-Cheng Chiang, Chih-Hao Wang, Kuan-Lun Cheng, Ching-Wei Tsai, Shi Ning Ju, Jui-Chien Huang
-
Patent number: 11637066Abstract: An integrated circuit includes a strip structure having a front side and a back side. A gate structure is on the front side of the strip structure. The integrated circuit includes a plurality of channel layers above the front side of the strip structure, wherein each of the plurality of channel layers is enclosed within the gate structure. An isolation structure surrounds the strip structure. The integrated circuit includes a backside via in the isolation structure. An epitaxy structure is on the front side of the strip structure. The integrated circuit includes a contact over the epitaxy structure. The contact has a first portion on a first side of the epitaxy structure. The first portion of the contact extends into the isolation structure and contacts the backside via. The integrated circuit includes a backside power rail on the back side of the strip structure and contacting the backside via.Type: GrantFiled: January 5, 2021Date of Patent: April 25, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Wei Peng, Wei-Cheng Lin, Cheng-Chi Chuang, Jiann-Tyng Tzeng
-
Patent number: 11636324Abstract: Embodiments relate to a Gaussian synapse device configured so that its transfer characteristics resemble a Gaussian distribution. Embodiments of the Gaussian synapse device include an n-type field-effect transistor (FET) and p-type FET with a common contact so that the two FETs are connected in series. Some embodiments include a global back-gate contact and separate top-gate contact to obtain dual-gated FETs. Some embodiments include two different 2D materials used in the channel to generate the two FETs, while some embodiments use a single ambipolar transport material. In some embodiments, the dual-gated structure is used to dynamically control the amplitude, mean and standard deviation of the Gaussian synapse. In some embodiments, the Gaussian synapse device can be used as a probabilistic computational device (e.g., used to form a probabilistic neural network).Type: GrantFiled: August 12, 2020Date of Patent: April 25, 2023Assignee: The Penn State Research FoundationInventors: Saptarshi Das, Amritanand Sebastian
-
Patent number: 11637189Abstract: The present disclosure relates to the technical field of semiconductors, and provides a semiconductor structure and a forming method thereof. The forming method includes: providing a base and a plurality of stack structures that are located on the base, arranged at intervals, and extend along a first direction, wherein the stack structures each include a plurality of semiconductor layers arranged at intervals in a direction perpendicular to a surface of the base, and a top surface and a bottom surface opposite to each other of each of the semiconductor layers are each provided with a first sacrificial layer, a surface of the first sacrificial layer that is away from the semiconductor layer is provided with a second sacrificial layer, a same etching process has different etching rates for the first sacrificial layer and the second sacrificial layer, an isolation layer is provided between adjacent ones of the stack structures.Type: GrantFiled: September 15, 2022Date of Patent: April 25, 2023Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.Inventors: Guangsu Shao, Deyuan Xiao
-
Patent number: 11631671Abstract: A method of fabricating a semiconductor device is provided. An initial stack of layers is formed over a substrate. The initial stack alternates between a first material layer and a second material layer that has a different composition from the first material layer. The initial stack is divided into a first stack and a second stack. First GAA transistors are formed in the first stack by using the first material layers as respective channel regions for the first GAA transistors and using the second material layers as respective replacement gates for the first GAA transistors. Second GAA transistors are formed in the second stack by using the second material layers as respective channel regions for the second GAA transistors and using the first material layers as respective replacement gates for the second GAA transistors. The second GAA transistors are vertically offset from the first GAA transistors.Type: GrantFiled: December 29, 2020Date of Patent: April 18, 2023Assignee: Tokyo Electron LimitedInventors: H. Jim Fulford, Anton J. Devilliers, Mark I. Gardner, Daniel Chanemougame, Jeffrey Smith, Lars Liebmann, Subhadeep Kal
-
Patent number: 11631681Abstract: Embodiments herein relate to vertical contacts for semiconductor devices. For instance, a memory device having vertical contacts can comprise a substrate including circuitry components, a vertical stack of layers formed from repeating iterations of a group of layers disposed on the substrate, the group of layers comprising a first dielectric material layer, a semiconductor material layer, and a second dielectric material layer including horizontal conductive lines formed along a horizontal plane in the second dielectric material layer, and vertical contacts coupled to the horizontal conductive lines, the vertical contacts extending along a vertical plane within the vertical stack of layers to directly electrically couple the horizontal conductive lines to the circuitry components.Type: GrantFiled: March 2, 2021Date of Patent: April 18, 2023Assignee: Micron Technology, Inc.Inventors: Byung Yoon Kim, Sangmin Hwang, Kyuseok Lee
-
Patent number: 11626494Abstract: A semiconductor device structure according to the present disclosure includes a source feature and a drain feature, at least one channel structure extending between the source feature and the drain feature, a gate structure wrapped around each of the at least one channel structure, a semiconductor layer over the gate structure, a dielectric layer over the semiconductor layer, a doped semiconductor feature extending through the semiconductor layer and the dielectric layer to be in contact with the source feature, a metal contact plug over the doped semiconductor feature, and a buried power rail disposed over the metal contact plug.Type: GrantFiled: January 4, 2021Date of Patent: April 11, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chia-Hung Chu, Sung-Li Wang, Shuen-Shin Liang, Hsu-Kai Chang, Ding-Kang Shih, Tsungyu Hung, Pang-Yen Tsai, Keng-Chu Lin
-
Patent number: 11621355Abstract: Embodiments relate to a computing device that may be configured as a biomimetic audiomorphic device. The device can include a field effect transistor (FET) having a split-gate architecture with different spacing between the split-gates. Embodiments of the device can include multiple split-gates. Some embodiments include the integration of delay elements and tunable resistor-capacitance (RC) circuits for imitating the interaural time delay neurons. Some embodiments include global back-gating structural features to provide neuroplasticity aspects so as to provide adaptation related changes.Type: GrantFiled: July 28, 2020Date of Patent: April 4, 2023Assignee: The Penn State Research FoundationInventors: Saptarshi Das, Sarbashis Das, Akhil Dodda
-
Patent number: 11615962Abstract: A method includes providing a structure having a substrate and a stack of semiconductor layers over a surface of the substrate and spaced vertically one from another; forming an interfacial layer wrapping around each of the semiconductor layers; forming a high-k dielectric layer over the interfacial layer and wrapping around each of the semiconductor layers; and forming a capping layer over the high-k dielectric layer and wrapping around each of the semiconductor layers. With the capping layer wrapping around each of the semiconductor layers, the method further includes performing a thermal treatment to the structure, thereby increasing a thickness of the interfacial layer. After the performing of the thermal treatment, the method further includes removing the capping layer.Type: GrantFiled: February 4, 2021Date of Patent: March 28, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Kuan-Lun Cheng, Chih-Hao Wang
-
Patent number: 11616150Abstract: A semiconductor device with C-shaped channel portion and an electronic apparatus including the semiconductor device are disclosed. According to the embodiments, the semiconductor device may include a first semiconductor element and a second semiconductor element adjacent in a first direction. The first semiconductor element and the second semiconductor element may respectively include: a channel portion on a substrate, the channel portion including a curved nano-sheet or nano-wire with a C-shaped section; source/drain portions at upper and lower ends of the channel portion with respect to the substrate, respectively; and a gate stack surrounding a periphery of the channel portion. The channel portion of the first semiconductor element and the channel portion of the second semiconductor element may be substantially coplanar.Type: GrantFiled: January 20, 2021Date of Patent: March 28, 2023Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventor: Huilong Zhu
-
Patent number: 11610989Abstract: The present disclosure provides a high electron mobility transistor (HEMT) including a substrate; a buffer layer over the substrate; a GaN layer over the buffer layer; a first AlGaN layer over the GaN layer; a first AlN layer over the first AlGaN layer; a p-type GaN layer over the first AlN layer; and a second AlN layer on the p-type GaN layer.Type: GrantFiled: March 3, 2021Date of Patent: March 21, 2023Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chun-Ming Chang, Chun-Liang Hou, Wen-Jung Liao
-
Patent number: 11605740Abstract: A transistor includes a first gate structure, a channel layer, and source/drain contacts. The first gate structure includes nanosheets. The channel layer is over the first gate structure. A portion of the channel layer wraps around the nanosheets of the first gate structure. The source/drain contacts are aside the nanosheets. The source/drain contacts are electrically connected to the channel layer.Type: GrantFiled: November 17, 2020Date of Patent: March 14, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Marcus Johannes Henricus Van Dal
-
Patent number: 11605729Abstract: A semiconductor device and fabrication method are described for integrating a nanosheet transistor with a capacitor or nonvolatile memory cell in a single nanosheet process flow by forming a nanosheet transistor stack (11-18) of alternating Si and SiGe layers which are selectively processed to form epitaxial source/drain regions (25A, 25B) and to form gate electrodes (33A-D) which replace the silicon germanium layers in the nanosheet transistor stack, and then selectively forming one or more insulated conductive electrode layers (e.g., 37/39, 25/55, 64/69) adjacent to the nanosheet transistor to define a capacitor or nonvolatile memory cell that is integrated with the nanosheet transistor.Type: GrantFiled: March 1, 2021Date of Patent: March 14, 2023Assignee: NXP B.V.Inventors: Mark Douglas Hall, Tushar Praful Merchant, Anirban Roy