Patents Examined by Tong-Ho Kim
-
Patent number: 11901242Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The semiconductor device includes first and second nanostructured channel regions in first and second nanostructured layers, respectively, and first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The first GAA structure includes an Al-based gate stack with a first gate dielectric layer, an Al-based n-type work function metal layer, a first metal capping layer, and a first gate metal fill layer. The second GAA structure includes an Al-free gate stack with a second gate dielectric layer, an Al-free p-type work function metal layer, a metal growth inhibition layer, a second metal capping layer, and a second gate metal fill layer.Type: GrantFiled: August 9, 2021Date of Patent: February 13, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chung-Liang Cheng, Ziwei Fang
-
Patent number: 11894379Abstract: A semiconductor device includes a first transistor in a first region of a substrate and a second transistor in a second region of the substrate. The first transistor includes multiple first semiconductor patterns; a first gate electrode; a first gate dielectric layer; a first source/drain region; and an inner-insulating spacer. The second transistor includes multiple second semiconductor patterns; a second gate electrode; a second gate dielectric layer; and a second source/drain region. The second gate dielectric layer extends between the second gate electrode and the second source/drain region and is in contact with the second source/drain region. The first source/drain region is not in contact with the first gate dielectric layer.Type: GrantFiled: June 20, 2022Date of Patent: February 6, 2024Inventors: Jung-Gil Yang, Geum-Jong Bae, Dong-Il Bae, Seung-Min Song, Woo-Seok Park
-
Patent number: 11894442Abstract: Embodiments disclosed herein include a nanosheet transistor for reducing parasitic capacitance. The nanosheet transistor may include a spacer region between a high-k metal gate and an epitaxial layer. The spacer region may include a first nanosheet stack with a first nanosheet and a second nanosheet. The spacer region may include an inner spacer region between the first nanosheet and the second nanosheet, and a side subway region located along an edge of the first nanosheet, the inner spacer region, and the second nanosheet.Type: GrantFiled: June 25, 2021Date of Patent: February 6, 2024Assignee: International Business Machines CorporationInventors: Jingyun Zhang, Ruilong Xie, Reinaldo Vega, Kangguo Cheng, Lan Yu
-
Patent number: 11894375Abstract: A semiconductor device includes a first transistor and a second transistor. The first transistor is of a first type in a first layer and includes a gate extending in a first direction and a first active region extending in a second direction perpendicular to the first direction. The second transistor is of a second type arranged in a second layer over the first layer and includes the gate and a second active region extending in the second direction. The semiconductor device further includes a first conductive line in a third layer between the first and second layers. The first conductive line electrically connects a first source/drain region of the first active region to a second source/drain region of the second active region. The gate includes an upper portion and a lower portion, and the first conductive line crosses the first gate between the upper portion and the lower portion.Type: GrantFiled: June 22, 2022Date of Patent: February 6, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Shih-Wei Peng, Te-Hsin Chiu, Wei-Cheng Lin, Jiann-Tyng Tzeng
-
Patent number: 11888065Abstract: Provided are a thin film transistor army substrate and an electronic device including the same. The thin film transistor army substrate includes a first active layer disposed on a substrate, a first gate insulating film disposed on the first active layer, a first gate electrode disposed on the first gate insulating film to overlap a part of the first active layer, a first insulating film disposed on the first gate electrode, a second active layer disposed on the first insulating film to overlap the first active layer and the first gate electrode, a second gate insulating film disposed on the second active layer, and a second gate electrode disposed on the second gate insulating film to overlap a part of the second active layer. The first gate electrode and the second gate electrode overlap each other, and thus it is possible to reduce an area occupied by transistors.Type: GrantFiled: October 27, 2022Date of Patent: January 30, 2024Assignee: LG Display Co., Ltd.Inventor: Younghyun Ko
-
Patent number: 11888039Abstract: An integrated circuit device includes a fin-type active region disposed on a substrate and extending in a first horizontal direction, a gate line disposed on the fin-type active region and extending in a second horizontal direction intersecting the first horizontal direction, the gate line including, a connection protrusion portion including a protrusion top surface at a first vertical level from the substrate, and a main gate portion including a recess top surface extending in the second horizontal direction from the connection protrusion portion, the recess top surface being at a second vertical level lower than the first vertical level, a gate contact disposed on the gate line and connected to the connection protrusion portion, a source/drain region disposed on the fin-type active region and disposed adjacent to the gate line, and a source/drain contact disposed on the source/drain region.Type: GrantFiled: June 21, 2021Date of Patent: January 30, 2024Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Yonghee Park, Myunggil Kang, Uihui Kwon, Seungkyu Kim, Ahyoung Kim, Youngseok Song
-
Patent number: 11881521Abstract: A semiconductor device including a structure having N gate electrode layers G and (N?1) channel formation region layers CH (where N?3) alternately juxtaposed on an insulating material layer of a base having the insulating material layer formed on a surface of a conductive substrate. Each of the structure, the channel formation region layer CH, and the gate electrode layer G has a bottom surface, a top surface, and four side surfaces. A second surface of the nth channel formation region layer is connected to a fourth surface of the nth gate electrode layer. A fourth surface of the nth channel formation region layer is connected to a second surface of the (n+1)th gate electrode layer. One of an odd-numbered layer of the gate electrode layers and an even-numbered layer of the gate electrode layers is connected to a first contact portion and the other is connected to a second contact portion.Type: GrantFiled: February 4, 2022Date of Patent: January 23, 2024Assignee: Sony Semiconductor Solutions CorporationInventors: Yuzo Fukuzaki, Koji Fukumoto
-
Patent number: 11881519Abstract: A semiconductor device and a method of fabricating a semiconductor device, the device including a fin-type pattern extending in a first direction; a gate electrode extending in a second direction over the fin-type pattern, the second direction being different from the first direction; spacers on sidewalls of the gate electrode; a capping structure on the gate electrode and the spacers, the capping structure including a first capping pattern and a second capping pattern, the second capping pattern being on the first capping pattern; and an interlayer insulating film surrounding sidewalls of each of the spacers and sidewalls of the capping structure, the interlayer insulating film being in contact with the first capping pattern.Type: GrantFiled: May 27, 2022Date of Patent: January 23, 2024Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Nam Gyu Cho, Rak Hwan Kim, Hyeok-Jun Son, Do Sun Lee, Won Keun Chung
-
Patent number: 11864369Abstract: A device includes a first horizontal-gate-all-around (HGAA) transistor, a second HGAA transistor, a first vertical-gate-all-around (VGAA) transistor, and a second VGAA transistor. The first HGAA transistor and the second HGAA transistor are adjacent to each other. The first VGAA transistor is over the first HGAA transistor. The second VGAA transistor is over the second HGAA transistor. A top surface of the first VGAA transistor is substantially coplanar with a top surface of the second VGAA transistor.Type: GrantFiled: March 10, 2022Date of Patent: January 2, 2024Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITYInventors: Hung-Yu Ye, Chung-Yi Lin, Yun-Ju Pan, Chee-Wee Liu
-
Patent number: 11862633Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first transistor having a first conductivity type arranged over a substrate. The first transistor includes a first gate electrode layer having a first work function and extending from a first source/drain region to a second source/drain region, and a first channel structure embedded in the first gate electrode layer and extending from the first source/drain region to the second source/drain region. A second transistor having the first conductivity type is arranged laterally beside the first transistor. The second transistor includes a second gate electrode layer having a second work function that is different than the first work function and extending from a third source/drain region to a fourth source/drain region. A second channel structure is embedded in the second gate electrode layer and extends from the third source/drain region to the fourth source/drain region.Type: GrantFiled: February 21, 2022Date of Patent: January 2, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mao-Lin Huang, Chih-Hao Wang, Kuo-Cheng Chiang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
-
Patent number: 11862636Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a selective bottom-up approach, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a substrate. The vertical arrangement of nanowires has one or more active nanowires above one or more oxide nanowires. A first gate stack is over and around the one or more active nanowires. A second gate stack is over and around the one or more oxide nanowires.Type: GrantFiled: April 27, 2022Date of Patent: January 2, 2024Assignee: Intel CorporationInventors: Nicole Thomas, Ehren Mannebach, Cheng-Ying Huang, Marko Radosavljevic
-
Patent number: 11862592Abstract: In some embodiments, an integrated chip (IC) is provided. The IC includes a metallization structure disposed over a semiconductor substrate, where the metallization structure includes an interconnect structure disposed in an interlayer dielectric (ILD) structure. A passivation layer is disposed over the metallization structure, where an upper surface of the interconnect structure is at least partially disposed between opposite inner sidewalls of the passivation layer. A sidewall spacer is disposed along the opposite inner sidewalls of the passivation layer, where the sidewall spacer has rounded sidewalls. A conductive structure is disposed on the passivation layer, the rounded sidewalls of the sidewall spacer, and the upper surface of the interconnect structure.Type: GrantFiled: July 21, 2022Date of Patent: January 2, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Alexander Kalnitsky, Kong-Beng Thei
-
Patent number: 11862715Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.Type: GrantFiled: May 16, 2022Date of Patent: January 2, 2024Assignee: Intel CorporationInventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung
-
Patent number: 11854908Abstract: A method of fabricating a device includes forming a dummy gate over a plurality of fins. Thereafter, a first portion of the dummy gate is removed to form a first trench that exposes a first hybrid fin and a first part of a second hybrid fin. The method further includes filling the first trench with a dielectric material disposed over the first hybrid fin and over the first part of the second hybrid fin. Thereafter, a second portion of the dummy gate is removed to form a second trench and the second trench is filled with a metal layer. The method further includes etching-back the metal layer, where a first plane defined by a first top surface of the metal layer is disposed beneath a second plane defined by a second top surface of a second part of the second hybrid fin after the etching-back the metal layer.Type: GrantFiled: May 9, 2022Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuan-Ting Pan, Huan-Chieh Su, Zhi-Chang Lin, Shi Ning Ju, Yi-Ruei Jhan, Kuo-Cheng Chiang, Chih-Hao Wang
-
Patent number: 11855224Abstract: A semiconductor device according to the present disclosure includes an anti-punch-through (APT) region over a substrate, a plurality of channel members over the APT region, a gate structure wrapping around each of the plurality of channel members, a source/drain feature adjacent to the gate structure, and a diffusion retardation layer. The source/drain feature is spaced apart from the APT region by the diffusion retardation layer. The source/drain feature is spaced apart from each of the plurality of channel members by the diffusion retardation layer. The diffusion retardation layer is a semiconductor material.Type: GrantFiled: February 28, 2022Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Ching-Wei Tsai, Yi-Bo Liao, Sai-Hooi Yeong, Hou-Yu Chen, Yu-Xuan Huang, Kuan-Lun Cheng
-
Patent number: 11855167Abstract: A semiconductor device structure and a method for forming a semiconductor device structure are provided. The semiconductor device structure includes a stack of channel structures over a semiconductor fin and a gate stack wrapped around the channel structures. The semiconductor device structure also includes a source/drain epitaxial structure adjacent to the channel structures and multiple inner spacers. Each of the inner spacers is between the gate stack and the source/drain epitaxial structure. The semiconductor device structure further includes an isolation structure between the semiconductor fin and the source/drain epitaxial structure.Type: GrantFiled: July 8, 2021Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Po-Cheng Wang, Ting-Yeh Chen, De-Fang Chen, Wei-Yang Lee
-
Patent number: 11854906Abstract: A semiconductor device with different gate structure configurations and a method of fabricating the semiconductor device are disclosed. The method includes depositing a high-K dielectric layer surrounding nanostructured channel regions, performing a first doping with a rare-earth metal (REM)-based dopant on first and second portions of the high-K dielectric layer, and performing a second doping with the REM-based dopants on the first portions of the high-K dielectric layer and third portions of the high-K dielectric layer. The first doping dopes the first and second portions of the high-K dielectric layer with a first REM-based dopant concentration. The second doping dopes the first and third portions of the high-K dielectric layer with a second REM-based dopant concentration different from the first REM-based dopant concentration. The method further includes depositing a work function metal layer on the high-K dielectric layer and depositing a metal fill layer on the work function metal layer.Type: GrantFiled: August 30, 2021Date of Patent: December 26, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chun-Fai Cheng, Chang-Miao Liu, Kuan-Chung Chen
-
Patent number: 11855068Abstract: A semiconductor cell structure includes first-type transistors aligned within a first-type active zone, second-type transistors aligned within a second-type active zone, a first power rail and a second power rail. Each of the first-type active zone and the second-type active zone is between a first alignment boundary and a second alignment boundary extending in a first direction which is perpendicular to a second direction. A first distance along the second direction between the long edge of the first power rail and the first alignment boundary of the first-type active zone is different from a second distance along the second direction between the long edge of the second power rail and the first alignment boundary of the second-type active zone by a predetermined distance.Type: GrantFiled: March 26, 2021Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Guo-Huei Wu, Chih-Liang Chen, Li-Chun Tien
-
Patent number: 11849617Abstract: Embodiments of the present disclosure provide a display panel and a display device. The display panel includes a base substrate, a plurality of pixel units and a plurality of gate line groups. At least one pixel unit includes a plurality of sub-pixels. At least one sub-pixel includes a sensing transistor and a driving transistor. Each gate line group includes a first gate line and a second gate line; for the first gate line and the second gate line corresponding to the sub-pixels in the same row, the positions of the sensing transistors are closer to the second gate lines, and the positions of the driving transistors are closer to the first gate line, For two sub-pixels close to each other and located in different pixel units in the same row, at least one signal line has a double-layer alignment structure, and the double-layer alignments are electrically connected with each other.Type: GrantFiled: November 29, 2019Date of Patent: December 19, 2023Assignees: Hefei BOE Joint Technology Co., Ltd., BOE Technology Group Co., Ltd.Inventors: Zhongyuan Wu, Yongqian Li, Can Yuan, Zhidong Yuan, Meng Li, Dacheng Zhang, Lang Liu
-
Patent number: 11842965Abstract: Nanostructure field-effect transistors (nano-FETs) including isolation layers formed between epitaxial source/drain regions and semiconductor substrates and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a power rail, a dielectric layer over the power rail, a first channel region over the dielectric layer, a second channel region over the first channel region, a gate stack over the first channel region and the second channel region, where the gate stack is further disposed between the first channel region and the second channel region and a first source/drain region adjacent the gate stack and electrically connected to the power rail.Type: GrantFiled: February 28, 2022Date of Patent: December 12, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Chih-Chao Chou, Wen-Ting Lan, Chih-Hao Wang