Patents Examined by Toniae M. Thomas
  • Patent number: 7795682
    Abstract: The disclosure concerns a method of manufacturing a semiconductor device including forming a plurality of fins made of a semiconductor material on an insulating layer; forming a gate insulating film on side surfaces of the plurality of fins; and forming a gate electrode on the gate insulating film in such a manner that a compressive stress is applied to a side surface of a first fin which is used in an NMOSFET among the plurality of fins in a direction perpendicular to the side surface and a tensile stress is applied to a side surface of a second fin which is used in a PMOSFET among the plurality of fins in a direction perpendicular to the side surface.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: September 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Kaneko, Atsushi Yagishita, Satoshi Inaba
  • Patent number: 7790579
    Abstract: According to the present invention, a gettering layer is deposited both on the side surfaces and the bottom surface of a semiconductor chip. The semiconductor chip is then mounted on the board of a package so that a Schottky barrier is formed on the bottom surface. With this structure, metal ions that pass through the board of the package can be captured by the defect layer deposited on the side surfaces and/or the bottom surface of the semiconductor chip, and by the Schottky barrier.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: September 7, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kohji Kanamori, Teiichirou Nishizaka, Noriaki Kodama, Isao Katayama, Yoshihiro Matsuura, Kaoru Ishihara, Yasushi Harada, Naruaki Minenaga, Chihiro Oshita
  • Patent number: 7785966
    Abstract: An improved method for fabricating floating gate structures of flash memory cells having reduced and more uniform forward tunneling voltages. The method may include the steps of: forming at least two floating gates over a substrate; forming a mask over each of the floating gates, each of the masks having a portion, adjacent to a tip of a respective one of the floating gates, of a given thickness, wherein the given thicknesses of the mask portions are different from one another; and etching the masks to reduce the different given thicknesses of the mask portions to a reduced thickness wherein the reduced thickness portions of the mask are of a uniform thickness.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 31, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chang Liu, Wen-Ting Chu, Chi-Hsin Lo, Chia-Shiung Tsai
  • Patent number: 7781283
    Abstract: A method of manufacturing a dynamic random access memory cell includes: forming a substrate having an insulating region over a conductive region; forming a fin of a fin-type field effect transistor (FinFET) device over the insulating region; forming a storage capacitor at a first end of the fin; and forming a back-gate at a lateral side of the fin. The back-gate is in electrical contact with the conductive region and is structured and arranged to influence a threshold voltage of the fin.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7781288
    Abstract: A semiconductor structure, such as a CMOS structure, includes a gate electrode that has a laterally variable work function. The gate electrode that has the laterally variable work function may be formed using an angled ion implantation method or a sequential layering method. The gate electrode that has the laterally variable work function provides enhanced electrical performance within an undoped channel field effect transistor device.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Steven Koester, Amlan Majumdar
  • Patent number: 7781262
    Abstract: The method of producing a semiconductor device in which chips are resin-molded, including steps of: preparing frames having front and back surfaces and die pads; preparing an insulation resin sheet having a first and a second surfaces; preparing a resin-sealing metal mold having cap pins; mounting the resin sheet inside the resin-sealing metal mold in such a manner that the second surface of the resin sheet contacts an inner bottom surface of the resin-sealing metal mold; mounting power chips on the surfaces of the die pads; positioning the frames on the first surface of the resin sheet in such a manner that the back surfaces of the die pads contact the first surface of the resin sheet; pressing the die pads toward the resin sheet using the cap pins and fixing the die pads; injecting a sealing resin in the resin-sealing metal mold and hardening the sealing resin; and removing the semiconductor device in which the power chips are molded with the sealing resin out from the resin-sealing metal mold.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: August 24, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenichi Hayashi, Hisashi Kawafuji, Tatsuyuki Takeshita, Nobuhito Funakoshi, Hiroyuki Ozaki
  • Patent number: 7777301
    Abstract: A method of mounting an electronic component on a substrate includes forming at least one trench in a surface of the substrate. The trenches formed in the substrate reduce a stiffness of the substrate, which provides less resistance to shear. Accordingly, the trenches reduce the amount of strain on the joints, which mount the electronic component to the substrate, which enhances the life of the joints.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: David Questad, Vijayeshwar D. Khanna, Jennifer V. Muncy, Arun Sharma, Sri M. Sri-Jayantha, Lorenzo Valdevit
  • Patent number: 7772646
    Abstract: There is a method of manufacturing a semiconductor device with a semiconductor body comprising a semiconductor substrate and a semiconductor region which are separated from each other with an electrically insulating layer which includes a first and a second sub-layer which, viewed in projection, are adjacent to one another, wherein the first sub-layer has a smaller thickness than the second sub-layer, and wherein, in a first sub-region of the semiconductor region lying above the first sub-layer, at least one digital semiconductor element is formed and, in a second sub-region of the semiconductor region lying above the second sub-layer, at least one analog semiconductor element is formed. According to an example embodiment, the second sub-layer is formed in that the lower border thereof is recessed in the semiconductor body in relation to the lower border of the first sub-layer Fully depleted SOI devices are thus formed.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: August 10, 2010
    Assignee: NXP B.V.
    Inventors: Josine Johanna Gerarda Petra Loo, Vincent Charles Venezia, Youri Ponomarev
  • Patent number: 7772020
    Abstract: A vertical topology device includes a conductive adhesion structure having a first surface and a second surface, a conductive thick film support formed on the first surface, and a semiconductive device having an upper electrical contact and located over the conductive adhesion layer. Electrical current can flow between the conductive thick film and the upper electrical contact.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 10, 2010
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 7767527
    Abstract: A method for producing a vertical transistor component includes steps of providing a semiconductor substrate, applying an auxiliary layer to the semiconductor substrate, and patterning the auxiliary layer for the purpose of producing at least one trench which extends as far as the semiconductor substrate and which has opposite sidewalls. The method further includes producing a monocrystalline semiconductor layer on at least one of the sidewalls of the trench, producing an electrode insulated from the monocrystalline semiconductor layer on the at least one sidewall of the trench and the semiconductor substrate.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: August 3, 2010
    Assignee: Infineon Technologies AG
    Inventors: Martin Poelzl, Walter Rieger
  • Patent number: 7763932
    Abstract: A structure, memory devices using the structure, and methods of fabricating the structure. The structure includes: an array of nano-fins, each nano-fin comprising an elongated block of semiconductor material extending axially along a first direction, the nano-fins arranged in groups of at least two nano-fins each, wherein ends of nano-fins of each adjacent group of nano-fins are staggered with respect to each other on both a first and a second side of the array; wherein nano-fins of each group of nano-fins are electrically connected to a common contact that is specific to each group of nano-fins such that the common contacts comprise a first common contact on the first side of the array and a second common contact on the second side of the array; and wherein each group of nano-fins has at least two gates that electrically control the conductance of nano-fins of the each group of nano-fins.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: July 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Patent number: 7754524
    Abstract: Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: July 13, 2010
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Linda T. Romano, David P. Stumbo
  • Patent number: 7745319
    Abstract: There is provided a system and method for fabricating a fin field effect transistor. More specifically, in one embodiment, there is provided a method comprising depositing a layer of nitride on a substrate, applying a photolithographic mask on the layer of nitride to define a location of a wall, etching the layer of nitride to create the wall, removing the photolithographic mask, depositing a spacer layer adjacent to the wall, etching the spacer layer to create a spacer adjacent to the wall, wherein the spacer and the wall cover a first portion of the substrate, and etching a second portion of the substrate not covered by the spacer to create a trench.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: June 29, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller
  • Patent number: 7745300
    Abstract: Disclosed is a capacitor and method for forming a capacitor in a semiconductor. The method includes the steps of: (a) forming a lower electrode pattern on a silicon semiconductor substrate; (b) etching a portion of the lower electrode pattern to a predetermined depth to form a step in the lower electrode pattern; (c) forming a dielectric layer and a upper electrode layer on an entire surface of the substrate including the lower electrode pattern; and (e) patterning the upper electrode layer and the dielectric layer to form a upper electrode pattern and a dielectric pattern.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: June 29, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Kwon Kim
  • Patent number: 7737015
    Abstract: A simple and cost effective method of forming a fully silicided (FUSI) gate of a MOS transistor is disclosed. In one example, the method comprises forming a nitride hardmask overlying a polysilicon gate, forming an S/D silicide in source/drain regions of the transistor, oxidizing a portion of the S/D silicide to form an oxide barrier overlying the S/D silicide in the source/drain regions, removing the nitride hardmask from the polysilicon gate, and forming a gate silicide such as by deposition of a gate silicide metal over the polysilicon gate and the oxide barrier in the source/drain regions to form a fully silicided (FUSI) gate in the transistor. Thus, the oxide barrier protects the source/drain regions from additional silicide formation by the gate silicide metal formed thereafter. The method may further comprise selectively removing the oxide barrier in the source/drain regions after forming the fully silicided (FUSI) gate.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: June 15, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Puneet Kohli, Craig Huffman, Manfred Ramin
  • Patent number: 7736921
    Abstract: An EL element capable of: preventing the state in which number of excessive layers are laminated on each light emitting part formed in a pattern at the time of forming the light emitting parts using the photolithography method; executing the peeling treatment easily and quickly in the excessive layer peeling process; and preventing generation of color mixture or pixel narrowing derived from the elution of the patterned light emitting part into the light emitting layer coating solution to be coated later, at the end part thereof, at the time of coating a light emitting layer coating solution. In order to achieve the above mentioned object, the present invention provides a method for manufacturing an electroluminescent element using a photolithography method.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 15, 2010
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Tomoyuki Tachikawa, Norihito Ito
  • Patent number: 7732894
    Abstract: A method of mounting an electronic component on a substrate includes forming at least one trench in a surface of the substrate. The trenches formed in the substrate reduce a stiffness of the substrate, which provides less resistance to shear. Accordingly, the trenches reduce the amount of strain on the joints, which mount the electronic component to the substrate, which enhances the life of the joints.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventors: David Questad, Vijayeshwar D. Khanna, Jennifer V. Muney, Arun Sharma, Sri M. Sri-Jayantha, Lorenzo Valdevit
  • Patent number: 7723771
    Abstract: A capacitor structure comprises a first and a second electrode of conducting material. Between the first and second electrodes, an atomic layer deposited dielectric film is disposed, which comprises zirconium oxide and a dopant oxide. Herein, the dopant comprises an ionic radius that differs by more than 24 pm from an ionic radius of zirconium, while the dielectric film comprises a dopant content of 10 atomic percent or less of the dielectric film material excluding oxygen. A process for fabricating a capacitor comprises a step of forming a bottom electrode of the capacitor. On the bottom electrode, a dielectric film comprising zirconium oxide is deposited, and a step for introducing a dopant oxide into the dielectric film performed. On the dielectric structure, a top electrode is formed.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 25, 2010
    Assignee: Qimonda AG
    Inventors: Tim Boescke, Uwe Schroeder
  • Patent number: 7723204
    Abstract: A microelectronic assembly and a method for constructing a microelectronic assembly are provided. The microelectronic assembly may include a semiconductor substrate with an isolation trench (62) formed therein. The isolation trench (62) may have first and second opposing inner walls (74, 76) and a floor (78). First and second conductive plates (106) may be formed over the first and second opposing inner walls (74, 76) of the isolation trench (62) respectively such that there is a gap (90) between the first and second conductive plates (106). First and second semiconductor devices (114) may be formed in the semiconductor substrate on opposing sides of the isolation trench (62). The method may include forming a trench (62) in a semiconductor substrate, forming first and second conductive plates (106) within the trench, and forming first and second semiconductor devices (114) in the semiconductor substrate on opposing sides of the trench (62).
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: May 25, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishnu K. Khemka, Amitava Bose, Todd C. Roggenbauer, Ronghua Zhu
  • Patent number: 7714440
    Abstract: Provided is a metal interconnection structure of a semiconductor device, including a first metal film pattern disposed on an upper part of an insulation film of a semiconductor substrate; an intermetallic dielectric film having a metal contact plug in which a barrier layer, a metal film for contact plug and a second metal film are sequentially disposed, on the first metal film pattern; and a second metal film pattern disposed on the metal contact plug and intermetallic dielectric film and connected to the metal contact plug.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: May 11, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: In Cheol Ryu, Sung-gon Jin