Abstract: A control device for an air-conditioning system of a vehicle comprises an evaporator, a compressor with externally controlled variable displacement, and an expansion valve. The control device comprises a control block that receives a reference temperature indicating a desired temperature of the air downstream of the evaporator, and an effective temperature of the air present downstream of the evaporator. The control device-supplies a control signal for the compressor to bring the effective temperature substantially equal to the reference temperature. An observer module receives the control signal and supplies a temperature disturbance indicating an estimate of the oscillatory effect generated by an expansion valve on the temperature of air downstream of the evaporator when a compressor is driven by the control signal. An adder block removes from the effective temperature the temperature disturbance so as to eliminate the oscillatory effect on the effective temperature downstream of the evaporator.
Type:
Grant
Filed:
November 14, 2006
Date of Patent:
June 15, 2010
Assignee:
C.R.F. Societa Consortile per Azioni
Inventors:
Stefania Martini, Maria Laura Parodi, Carloandrea Malvicino
Abstract: An outdoor heat exchanger (23), an indoor heat exchanger (24), a compression/expansion unit (30), and other circuit components are connected in a refrigerant circuit (20). The compression/expansion unit (30) includes a compression mechanism (50), an electric motor (45), and an expansion mechanism (60). In addition, the refrigerant circuit (20) has an injection pipeline (26). When an injection valve (27) is opened, a portion of high pressure refrigerant after heat dissipation flows into the injection pipeline (26) and is introduced into an expansion chamber (66) of the expansion mechanism (60) in the process of expansion. In the expansion mechanism (60), power is recovered from both high pressure refrigerant introduced into the expansion chamber (66) from an inflow port (34) and high pressure refrigerant introduced into the expansion chamber (66) from the injection pipeline (26).
Abstract: A controller for a two-stage heat source is provide, which may be connected to either a single stage or a two-stage thermostat to provide low stage heating for a variable time period before switching to high stage heating. The controller includes at least a first terminal for receiving a signal requesting heating from a single-stage thermostat or a two-stage thermostat connected to the first terminal. A microcontroller in communication with the first terminal determines a duty cycle value for a heating cycle based on the duration in which a signal at the first terminal is present relative to the duration of the heating cycle. The microcontroller determines a low stage time limit from the duty cycle, and provides low stage heating when a signal is present at the first terminal for a time period not more than the time limit, and switches to high stage heating after the time limit.
Abstract: Energy is stored in the compression of a metastable degenerate Fermi electron gas contained in a compressed metallic base material subjected to a magnetic field in a high pressure cell. Heat energy is introduced to increase the energy of the compressed metastable degenerate Fermi electron gas. The increase in energy causes the magnetic field to increase so that the metastable degenerate Fermi electron gas is further compressed. Absorption of heat results in a decrease in the temperature. Energy can be withdrawn from The system by allowing the metastable degenerate Fermi electron gas to expand against the compressing magnetic field. To prevent development of fissures, the metallic base material is precompressed to provide an allowance for the volume of a metastable Fermi electron gas bubble to be created later.