Patents Examined by Vicki B Booker
  • Patent number: 11776844
    Abstract: The embodiments herein relate to contact via structures of semiconductor devices and methods of forming the same. A semiconductor device is provided. The semiconductor device includes a substrate, a conductive feature over the substrate, and a contact via structure over and electrically coupling to the conductive feature. The contact via structure has a concave profile.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: October 3, 2023
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Yung Fu Chong, Rui Tze Toh, Fangyue Liu
  • Patent number: 11776912
    Abstract: A method for preparing a semiconductor device structure is provided. The method includes forming a first conductive layer over a semiconductor substrate, and forming a first dielectric layer over the first conductive layer. The first conductive layer includes copper. The method also includes etching the first dielectric layer to form a first opening exposing the first conductive layer, and forming a first lining layer and a first conductive plug in the first opening. The first lining layer includes manganese, the first conductive plug includes copper, and the first conductive plug is surrounded by the first lining layer. The method further includes forming a second conductive layer over the first dielectric layer, the first lining layer and the first conductive layer. The second conductive layer includes copper.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: October 3, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Kuo-Hui Su
  • Patent number: 11742240
    Abstract: A semiconductor device includes a substrate, two semiconductor fins protruding from the substrate, an epitaxial feature over the two semiconductor fins and connected to the two semiconductor fins, a silicide layer over the epitaxial feature, a barrier layer over the silicide layer, and a metal layer over the barrier layer. The barrier layer includes a metal nitride. Along a boundary between the barrier layer and the metal layer, an atomic ratio of oxygen to metal nitride is about 0.15 to about 1.0.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Wei Chang, Yu-Ming Huang, Ethan Tseng, Ken-Yu Chang, Yi-Ying Liu
  • Patent number: 11728272
    Abstract: A device structure may include an interconnect-level dielectric material layer located over a substrate, a first metal interconnect structure embedded in the interconnect-level dielectric material layer and including a first metallic barrier liner and a first metallic fill material portion, and an overlying dielectric material layer. An opening in the overlying dielectric material layer may be formed entirely within an area of the first metallic barrier layer and outside the area of the first metallic fill material portion to reduce plasma damage. A second metal interconnect structure contacting a top surface of the first metallic barrier liner may be formed in the opening. An entirety of a top surface the first metallic fill material portion contacts a bottom surface of the overlying dielectric material layer.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jheng-Hong Jiang, Shing-Huang Wu, Chia-Wei Liu
  • Patent number: 11728268
    Abstract: A semiconductor device includes a transistor on a substrate, a first metal layer that is on the transistor and includes a lower wire electrically connected to the transistor, and a second metal layer on the first metal layer. The second metal layer includes an upper wire that is electrically connected to the lower wire and includes a via structure in a via hole and a line structure in a line trench. The via structure includes a via portion that is in the via hole and is coupled to the lower wire, and a barrier portion that vertically extends from the via portion to cover an inner surface of the line trench. The barrier portion is between the line structure and an insulating layer of the second metal layer. The barrier portion is thicker at its lower level than at its upper level.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: August 15, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wonhyuk Hong, Eui Bok Lee, Rakhwan Kim, Woojin Jang
  • Patent number: 11721629
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a device including tiers of materials located one over another, the tiers of materials including respective memory cells and control gates for the memory cells. The control gates include respective portions that collectively form part of a staircase structure. The staircase structure includes first regions and second regions coupled to the first regions. The second regions include respective sidewalls in which a portion of each of the first regions and a portion of each of the second regions are part of a respective control gate of the control gates. The device also includes conductive pads electrically separated from each other and located on the first regions of the staircase structure, and conductive contacts contacting the conductive pads.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: August 8, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, Yiping Wang, Jordan D. Greenlee, John Hopkins
  • Patent number: 11688688
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a staircase structure including a first stair layer and a second stair layer on the first stair layer. The first stair layer comprises a first conductive film. The semiconductor structure includes a landing pad disposed on the first conductive film. The landing pad has a first pad sidewall facing toward the second stair layer, a first lateral gap distance between an upper portion of the first pad sidewall and the second stair layer is smaller than a second lateral gap distance between a lower portion of the first pad sidewall and the second stair layer.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: June 27, 2023
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventor: Erh-Kun Lai
  • Patent number: 11682581
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: June 20, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kar Wui Thong, Harsh Narendrakumar Jain, John Hopkins
  • Patent number: 11676856
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a first polysilicon structure over the substrate, wherein the first polysilicon structure has a first grain size. The semiconductor device further includes a first barrier layer over the first polysilicon structure, wherein the first barrier layer has a non-uniform thickness. The semiconductor device further includes a second polysilicon structure over the first barrier layer, wherein the second polysilicon structure has a second grain size smaller than the first grain size.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: J. J. Lee, Chun-Tse Tsai, M. C. Hang
  • Patent number: 11674797
    Abstract: Aspects of the embodiments are directed to non-contact systems, methods and devices for optical detection of objects in space at precise angles. This method involves the design and fabrication of photodiode arrays for measuring angular response using self-aligned Schottky platinum silicide (PtSi) PIN photodiodes (PN-diodes with an intrinsic layer sandwiched in between) that provide linear angular measurements from incident light in multiple dimensions. A self-aligned device is defined as one in which is not sensitive to photomask layer registrations. This design eliminates device offset between “left” and right” channels for normal incident light as compared to more conventional PIN diode constructions.
    Type: Grant
    Filed: March 22, 2020
    Date of Patent: June 13, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Shrenik Deliwala, Paul W. Stevens, William Edward O'Mara
  • Patent number: 11670542
    Abstract: Embodiments of the present invention are directed to fabrication methods and resulting interconnect structures having stepped top vias that reduce via resistance. In a non-limiting embodiment of the invention, a surface of a conductive line is recessed below a first dielectric layer. A second dielectric layer is formed on the recessed surface and an etch stop layer is formed over the structure. A first cavity is formed that exposes the recessed surface of the conductive line and sidewalls of the second dielectric layer. The first cavity includes a first width between sidewalls of the etch stop layer. The second dielectric layer is removed to define a second cavity having a second width greater than the first width. A stepped top via is formed on the recessed surface of the conductive line. The top via includes a top portion in the first cavity and a bottom portion in the second cavity.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: June 6, 2023
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Lawrence A. Clevenger, Christopher J. Penny, Kisik Choi, Nicholas Anthony Lanzillo, Robert Robison
  • Patent number: 11670544
    Abstract: Various embodiments of the present disclosure provide a via-first process for connecting a contact to a gate electrode. In some embodiments, the contact is formed extending through a first interlayer dielectric (ILD) layer to a source/drain region bordering the gate electrode. An etch stop layer (ESL) is deposited covering the first ILD layer and the contact, and a second ILD layer is deposited covering the ESL. A first etch is performed into the first and second ILD layers and the etch stop layer to form a first opening exposing the gate electrode. A series of etches is performed into the second ILD layer and the etch stop layer to form a second opening overlying the contact and overlapping the first opening, such that a bottom of the second opening slants downward from the contact to the first opening. A gate-to-contact (GC) structure is formed filling the first and second openings.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsun Wang, Mei-Yun Wang, Kuo-Yi Chao, Wang-Jung Hsueh
  • Patent number: 11670593
    Abstract: An electronic device and a manufacturing method thereof are provided. The method includes at least the following steps. An insulating encapsulant is formed to encapsulate a multi-layered structure and a semiconductor die, where the multi-layered structure includes a first conductor, a diffusion barrier layer on the first conductor, and a metallic layer on the diffusion barrier layer, and the insulating encapsulant at least exposes a portion of the semiconductor die and a portion of the first conductor. A redistribution structure is formed over the insulating encapsulant, the semiconductor die, and the first conductor. The metallic layer is removed to form a recess in the insulating encapsulant. A second conductor is formed in the recess over the diffusion barrier layer, where the first conductor, the diffusion barrier layer, and the second conductor form a conductive structure that is electrically coupled to the semiconductor die through the redistribution structure.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Hou-Ju Huang, Shih-Ting Lin, Szu-Wei Lu, Hung-Wei Tsai
  • Patent number: 11672171
    Abstract: A light-emitting device includes a plurality of organic EL elements. Each of the organic EL elements includes a reflection electrode, a hole transport region, an electron-trapping luminescent layer, and a light extraction electrode in this order. The hole transport region has a sheet resistance of 4.0×107 ?/sq.? or more at a current of 0.1 nA/pixel, and the total thickness of the hole transport region and the electron-trapping luminescent layer is equivalent to an optical path length enabling emission from the electron-trapping luminescent layer to be enhanced.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: June 6, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Norifumi Kajimoto, Tetsuo Takahashi, Koji Ishizuya, Itaru Takaya, Hirokazu Miyashita, Takayuki Ito, Hiroaki Sano
  • Patent number: 11662659
    Abstract: Disclosed are a photomask, an exposure apparatus, and a method of fabricating a three-dimensional semiconductor memory device using the same. The photomask may include a mask substrate, a first mask pattern on the mask substrate, and an optical path modulation substrate. The optical path modulation substrate may include a first region on a portion of the first mask pattern, and a second region on another portion of the first mask pattern. The second region has a thickness that is less than a thickness of the first region.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: May 30, 2023
    Inventors: Donghwan Kim, Woosung Kim, Gunwoo Park, Ki-Bong Seo, Jang-Hwan Jeong
  • Patent number: 11652049
    Abstract: A method includes forming a first etch stop layer (ESL) over a conductive feature, forming a first dielectric layer on the first ESL, forming a second ESL on the first dielectric layer, forming a second dielectric layer on the second ESL, forming a trench in the second dielectric layer, forming a first opening in a bottom surface of the trench extending through the second dielectric layer, and forming a second opening in a bottom surface of the first opening. The second opening extends through the first dielectric layer and the first ESL. The second opening exposes a top surface of the conductive feature. The method further includes widening the first opening to a second width, filling the trench with a conductive material to form a conductive line, and filling the second opening and the first opening with the conductive material to form a conductive via.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Chih Huang, Li-An Sun, Che-En Tsai, Yu-Lin Chiang, Chung Chuan Huang, Chih-Hao Chen
  • Patent number: 11652055
    Abstract: The present disclosure relates to an integrated chip including a lower conductive wire within a first dielectric layer over a substrate. A second dielectric layer is over the first dielectric layer. A conductive via is over the lower conductive wire and within the second dielectric layer. A conductive liner layer lines sidewalls of the via. A barrier layer lines sidewalls of the conductive liner layer and lines sidewalls of the second dielectric layer. The conductive liner layer is laterally separated from the second dielectric layer by the barrier layer. The conductive liner layer vertically extends between sidewalls of the barrier layer from a bottom surface of the conductive via to a top surface of the lower conductive wire.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Wei Li, Shin-Yi Yang, Ming-Han Lee, Shau-Lin Shue
  • Patent number: 11652054
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first interconnect dielectric layer over a substrate. An interconnect wire extends through the first interconnect dielectric layer, and a dielectric on wire structure is arranged directly over the interconnect wire. Outer sidewalls of the dielectric on wire structure are surrounded by the first interconnect dielectric layer. The integrated chip further includes a second interconnect dielectric layer arranged over the first interconnect dielectric layer, and an interconnect via that extends through the second interconnect dielectric layer and the dielectric on wire structure to contact the interconnect wire.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Chieh Yao, Chung-Ju Lee, Chih Wei Lu, Hsi-Wen Tien, Yu-Teng Dai, Wei-Hao Liao
  • Patent number: 11646224
    Abstract: The present disclosure provides a method of fabricating a semiconductor structure with a reduced pitch (half-pitch feature) and a method of fabricating the same. The method includes providing a substrate; forming a dielectric layer disposed on the substrate; forming at least one main feature disposed in the dielectric layer and contacting the substrate; forming at least one first conductive feature disposed in the dielectric layer and on the main feature; forming at least one first spacer interposed between the dielectric layer and a portion of the first conductive feature; forming a plurality of second conductive features disposed in the dielectric layer and on either side of the first conductive feature; and forming a plurality of second spacers interposed between the dielectric layer and portions of the second conductive features.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: May 9, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Hsih-Yang Chiu
  • Patent number: 11646312
    Abstract: A method for manufacturing a semiconductor device includes forming one or more fins extending in a first direction over a substrate. The one or more fins include a first region along the first direction and second regions on both sides of the first region along the first direction. A dopant is implanted in the first region of the fins but not in the second regions. A gate structure overlies the first region of the fins and source/drains are formed on the second regions of the fins.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: May 9, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Chung Chen, Chi-Feng Huang, Victor Chiang Liang, Fu-Huan Tsai, Hsieh-Hung Hsieh, Tzu-Jin Yeh, Han-Min Tsai, Hong-Lin Chu