Patents Examined by Victor V Barzykin
  • Patent number: 11973114
    Abstract: A semiconductor device includes at least a first lateral MOSFET formed on a semiconductor substrate. The first lateral MOSFET has an interface defined by a plurality of trenches along which the current flow can be modulated by a perpendicular electric field. The portion of the interface lies on a plane substantially perpendicular to the plane of the substrate. The interface is configured such that at least a portion of the current flow along the portion of the interface that lies on a plane substantially perpendicular to the plane of the substrate is in a direction substantially parallel to the plane of the substrate.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: April 30, 2024
    Assignee: Purdue Research Foundation
    Inventor: James A. Cooper
  • Patent number: 11967535
    Abstract: A product includes a semiconductor substrate, with at least first and second thin-film layers disposed on the substrate and patterned to define a matrix of dies, which are separated by scribe lines and contain active areas circumscribed by the scribe lines. A plurality of overlay targets are formed in the first and second thin-film layers within each of the active areas, each overlay target having dimensions no greater than 10 ?m×10 ?m in a plane parallel to the substrate. The plurality of overlay targets include a first linear grating formed in the first thin-film layer and having a first grating vector, and a second linear grating formed in the second thin-film layer, in proximity to the first linear grating, and having a second grating vector parallel to the first grating vector.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: April 23, 2024
    Assignee: KLA CORPORATION
    Inventors: Amnon Manassen, Vladimir Levinski, Ido Dolev, Yoram Uziel
  • Patent number: 11957001
    Abstract: A bank has an opening including a first opening and a second opening. The second opening extends from the first opening in such a direction that the second opening overlaps the first electrode. The second opening at least partially overlaps the first electrode. The first electrode has an end close to the first opening and overlapping the second opening. The second opening has a maximum width smaller than a maximum width of the first opening. The widths are measured perpendicular to the direction in which the second opening extends from the first opening.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 9, 2024
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Youhei Nakanishi, Shota Okamoto
  • Patent number: 11955445
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: April 9, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Belgacem Haba, Rajesh Katkar
  • Patent number: 11935943
    Abstract: A method of manufacturing a semiconductor device, the method including: forming, in a first region of a substrate, an active fin and a sacrificial gate structure intersecting the active fin; forming a first spacer and a second spacer on the substrate to cover the sacrificial gate structure; forming a mask in a second region of the substrate to expose the first region of the substrate; removing the second spacer from the first spacer in the first region of the substrate by using the mask; forming recesses at opposite sides of the sacrificial gate structure by removing portions of the active fin; forming a source and a drain in the recesses; and forming an etch-stop layer to cover both sidewalls of the sacrificial gate structure and a top surfaces of the source and drain.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: March 19, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun Kwan Yu, Seung Hun Lee, Yang Xu
  • Patent number: 11925012
    Abstract: A method for forming a capacitor array structure includes the following steps: providing a substrate, a capacitor contact being exposed on a surface of the substrate, and the substrate including an array region and a peripheral region; forming a bottom supporting layer covering the substrate and the capacitor contact, the bottom supporting layer having a gap therein; forming a filling layer filling the gap and covering the capacitor contact and the surface of the bottom supporting layer, a thickness of the filling layer located at the peripheral region being larger than that of the filling layer located at the array region; forming supporting layers and sacrificial layers alternately stacked in a direction perpendicular to the substrate; forming a capacitor hole; sequentially forming a lower electrode layer on an inner wall of the capacitor hole.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: March 5, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Chaojun Sheng, Wenjia Hu
  • Patent number: 11917819
    Abstract: A three-dimensional semiconductor memory device may include a first stack block including first stacks arranged in a first direction on a substrate, a second stack block including second stacks arranged in the first direction on the substrate, and a separation structure provided on the substrate between the first stack block and the second stack block. The separation structure may include first mold layers and second mold layers, which are stacked in a vertical direction perpendicular to a top surface of the substrate.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 27, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Junhyoung Kim, Kwang-Soo Kim, Geunwon Lim, Jisung Cheon
  • Patent number: 11908735
    Abstract: Interconnect structures and corresponding techniques for forming the interconnect structures are disclosed herein. An exemplary interconnect structure includes a conductive feature that includes cobalt and a via disposed over the conductive feature. The via includes a first via barrier layer disposed over the conductive feature, a second via barrier layer disposed over the first via barrier layer, and a via bulk layer disposed over the second via barrier layer. The first via barrier layer includes titanium, and the second via barrier layer includes titanium and nitrogen. The via bulk layer can include tungsten and/or cobalt. A capping layer may be disposed over the conductive feature, where the via extends through the capping layer to contact the conductive feature. In some implementations, the capping layer includes cobalt and silicon.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Jen Chang, Min-Yann Hsieh, Hua Feng Chen, Kuo-Hua Pan
  • Patent number: 11908783
    Abstract: Provided is a wiring substrate and its manufacturing method in which a thick wiring layer capable of being applied with a large current and a thin wiring layer capable of being subjected to microfabrication coexist in the same layer. The wiring substrate includes: an insulating film located over a first wiring and having a via; and a second wiring over the insulating film. The second wiring has a stacked structure including a first layer and a second layer covering the first layer. The second layer is in direct contact with the first wiring in the via. A thickness of the second layer in a region overlapping with the first layer is different from a thickness of the second layer in the via.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: February 20, 2024
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventor: Naoki Hayashi
  • Patent number: 11901382
    Abstract: Provided is an imaging element including a photoelectric conversion unit formed by stacking a first electrode, a photoelectric conversion layer and a second electrode. The photoelectric conversion unit further includes a charge storage electrode which is disposed to be spaced apart from the first electrode and disposed opposite to the photoelectric conversion layer via an insulating layer. The photoelectric conversion unit is formed of N number of photoelectric conversion unit segments, and the same applies to the photoelectric conversion layer, the insulating layer and the charge storage electrode. An nth photoelectric conversion unit segment is formed of an nth charge storage electrode segment, an nth insulating layer segment and an nth photoelectric conversion layer segment. As n increases, the nth photoelectric conversion unit segment is located farther from the first electrode. A thickness of the insulating layer segment gradually changes from a first to Nth photoelectric conversion unit segment.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: February 13, 2024
    Assignee: Sony Group Corporation
    Inventors: Akira Furukawa, Yoshihiro Ando, Hideaki Togashi, Fumihiko Koga
  • Patent number: 11898744
    Abstract: A quantum structure thin film includes an excitation layer, a first substrate and a second substrate. The excitation layer includes a plurality of quantum structures which are one of quantum dots and quantum rods, and which are made of one of cesium lead halide and organic ammonium lead halide. The first substrate and the second substrate are respectively disposed on two opposite sides of the excitation layer. One of the first substrate and the second substrate includes an inner layer, a buffer layer, and an outer layer that are sequentially disposed on the excitation layer in such order. Also disclosed herein is a quantum structure light-emitting module including the quantum structure thin film.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: February 13, 2024
    Assignee: SIC TECHNOLOGY CO. LTD
    Inventor: Shien-Tsung Wu
  • Patent number: 11894445
    Abstract: Disclosed is a method for producing a semiconductor device, the method including forming a plurality of semiconductor arrangements one above the other, wherein forming each of the plurality of semiconductor arrangements includes forming a semiconductor layer, forming a plurality of trenches in a first surface of the semiconductor layer, and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches. Forming of at least one of the plurality of semiconductor arrangements further includes forming a protective layer covering mesa regions between the plurality of trenches of the respective semiconductor layer, and covering a bottom, the first sidewall and the second sidewall of each of the plurality of trenches that are formed in the respective semiconductor layer.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 6, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Tutuc, Matthias Kuenle, Ingo Muri, Hans Weber
  • Patent number: 11887935
    Abstract: A method for manufacturing a semiconductor device includes forming semiconductor devices from a semiconductor wafer and identifying a position of the semiconductor device in the semiconductor wafer, wherein the forming the semiconductor devices includes forming a first repeating pattern including i semiconductor devices each having a unique pattern, forming a second repeating pattern including j semiconductor devices each having a unique pattern, defining semiconductor devices on the semiconductor wafer such that each of the k semiconductor devices has a unique pattern based on the first and second repeating patterns, and grinding a backside of the semiconductor wafer, wherein each unique pattern of the k semiconductor devices is composed of a combination of the unique patterns of the first and second repeating patterns, wherein the position of the semiconductor device is identified based on the unique patterns of the first and second repeating patterns and an angle of a grinding mark.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: January 30, 2024
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Takehiro Ueda
  • Patent number: 11869880
    Abstract: A method of transferring a micro light emitting diode (LED) to a pixel array panel includes transferring the micro LED by spraying using an inkjet method, wherein the micro LED includes an active layer including a first portion emitting light in a first direction and a second portion emitting the light in a second direction different from the first direction.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: January 9, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyungwook Hwang, Junsik Hwang, Sungwoo Hwang
  • Patent number: 11804446
    Abstract: Provided is a semiconductor device capable of improving the divisibility of a wafer by concentrating crack stress by disposing notch patterns on a scribe line of a wafer, by locally removing a metal thin film in a scribe line and propagating a dividing energy in a vertical direction of a die surface. A semiconductor device includes: die regions spaced apart from each other in a wafer, scribe line regions disposed between neighboring ones of the die regions and covered with a metal material layer, and one or more open areas disposed in each of the scribe line regions and formed by locally removing the metal material layer, wherein each of the open areas includes one or more notch patterns indicating a direction in which the scribe line region is extended.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 31, 2023
    Assignee: SK hynix Inc.
    Inventors: Hyung Jin Park, Jung Wook Kim, Hyo Jun Lee
  • Patent number: 11804524
    Abstract: A Metal Oxide Semiconductor (MOS) cell design has traditional planar cells extending in a first dimension, and trenches with their length extending in a third dimension, orthogonal to the first dimension in a top view. The manufacturing process includes forming a horizontal channel, and a plurality of trenches discontinued in the planar cell regions. Horizontal planar channels are formed in the mesa of the orthogonal trenches. A series connected horizontal planar channel and a vertical trench channel are formed along the trench regions surrounded by the first base. The lack of a traditional vertical channel is important to avoid significant reliability issues (shifts in threshold voltage Vth). The planar cell design offers a range of advantages both in terms of performance and processability. Manufacture of the planar cell is based on a self-aligned process with minimum number of masks, with the potential of applying additional layers or structures.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: October 31, 2023
    Assignee: MQSEMI AG
    Inventors: Munaf Rahimo, Iulian Nistor
  • Patent number: 11804549
    Abstract: An integrated circuit device includes a device isolation trench defining an active area, a gate trench extending in a first direction across the active area and the device isolation film, a gate dielectric film covering an inner wall of the gate trench, and a conductive line filling a part of the gate trench above the gate dielectric film. The active area includes a fin body portion located under the conductive line, and a thinner fin portion protruding from the fin body portion toward the conductive line and having a width less than a width of the fin body portion in the first direction.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: October 31, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-seung Lee, Yun-seung Kang, Soung-hee Lee, Sang-gyo Chung, Hyun-chul Lee
  • Patent number: 11784050
    Abstract: A microelectronic device may have side surfaces each including a first portion and a second portion. The first portion may have a highly irregular surface topography extending from an adjacent surface of the microelectronic device. The second portion may have a less uneven surface extending from the first portion to an opposing surface of the microelectronic device. Methods of forming the microelectronic device may include creating dislocations in the wafer in a street between the one or more microelectronic devices by implanting ions and cleaving the wafer responsive to failure of stress concentrations near the dislocations through application of heat, tensile forces or a combination thereof. Related packages and methods are also disclosed.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: October 10, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Andrew M. Bayless, Brandon P. Wirz
  • Patent number: 11769758
    Abstract: A light emitting device includes a backplane, an array of light emitting diodes attached to a front side of the backplane, a transparent conductive layer contacting front side surfaces of the light emitting diodes, an optical bonding layer located over a front side surface of the transparent conductive layer, a transparent cover plate located over a front side surface of the optical bonding layer, and a black matrix layer including an array of openings therethrough, and located between the optical bonding layer and the transparent cover plate.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: September 26, 2023
    Assignee: NANOSYS, INC.
    Inventor: Brian Kim
  • Patent number: 11756791
    Abstract: According to one embodiment, a semiconductor device includes first and second electrodes, first, fourth, and sixth semiconductor regions of a first conductivity type, a junction region, a fifth semiconductor region of a second conductivity type, and a gate electrode. The junction region includes a second semiconductor region of the first conductivity type and a third second semiconductor region of the second conductivity type. The second semiconductor regions and the third semiconductor regions are alternately provided in a second direction perpendicular to a first direction. A concentration of at least one first element selected from the group consisting of a heavy metal element and a proton in the junction region is greater a concentration of the first element in the fourth semiconductor region, or a density of traps in the junction region is greater than that in the first semiconductor region and greater than that in the fourth semiconductor region.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: September 12, 2023
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Shingo Sato, Yuhki Fujino, Hiroaki Yamashita