Patents Examined by Victor V Barzykin
  • Patent number: 11239344
    Abstract: A method of manufacturing a semiconductor device, the method including: forming, in a first region of a substrate, an active fin and a sacrificial gate structure intersecting the active fin; forming a first spacer and a second spacer on the substrate to cover the sacrificial gate structure; forming a mask in a second region of the substrate to expose the first region of the substrate; removing the second spacer from the first spacer in the first region of the substrate by using the mask; forming recesses at opposite sides of the sacrificial gate structure by removing portions of the active fin; forming a source and a drain in the recesses; and forming an etch-stop layer to cover both sidewalls of the sacrificial gate structure and a top surfaces of the source and drain.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: February 1, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun Kwan Yu, Seung Hun Lee, Yang Xu
  • Patent number: 11230665
    Abstract: A disclosed light-emitting device may provide white light with a cyan gap coinciding with a melanopic sensitivity range and thus having reduced melanopic content. The disclosed light-emitting device may include a light source providing violet or blue light with a peak wavelength under 450 nanometers (nm). The disclosed light-emitting device may include at least one down-converter coupled to and located downstream of the light source and configured with a long-wavelength onset to convert the spectrum of the violet or blue light to generate white light with a spectral power content in a 447-531 nm wavelength range that is less than or equal to 10% of a total spectral power content in a 380-780 nm wavelength range. The disclosed light-emitting device may be incorporated in a light engine system that further includes a control system that controls a drive current to the light-emitting device.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: January 25, 2022
    Assignee: LUMILEDS LLC
    Inventors: Wouter A. Soer, Oleg B. Shchekin, Hans-Helmut Bechtel
  • Patent number: 11222912
    Abstract: Provided is an imaging element including a photoelectric conversion unit formed by stacking a first electrode, a photoelectric conversion layer and a second electrode. The photoelectric conversion unit further includes a charge storage electrode which is disposed to be spaced apart from the first electrode and disposed opposite to the photoelectric conversion layer via an insulating layer. The photoelectric conversion unit is formed of N number of photoelectric conversion unit segments, and the same applies to the photoelectric conversion layer, the insulating layer and the charge storage electrode. An nth photoelectric conversion unit segment is formed of an nth charge storage electrode segment, an nth insulating layer segment and an nth photoelectric conversion layer segment. As n increases, the nth photoelectric conversion unit segment is located farther from the first electrode. A thickness of the insulating layer segment gradually changes from a first to Nth photoelectric conversion unit segment.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: January 11, 2022
    Assignee: SONY CORPORATION
    Inventors: Akira Furukawa, Yoshihiro Ando, Hideaki Togashi, Fumihiko Koga
  • Patent number: 11217505
    Abstract: An electronics heat exchanger including a fluid flow body having a first panel, a second panel, and at least one fluid flow guide connecting the first panel and the second panel, a plurality of pedestals extending from the second panel, the plurality of pedestals including at least a first pedestal having a first height and a second pedestal having a second height, distinct from the first height, and wherein each of the pedestals is integral with the second panel.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: January 4, 2022
    Assignee: Aptiv Technologies Limited
    Inventors: Scott D. Brandenburg, Mark W. Hudson
  • Patent number: 11189553
    Abstract: Provided is a wiring substrate and its manufacturing method in which a thick wiring layer capable of being applied with a large current and a thin wiring layer capable of being subjected to microfabrication coexist in the same layer. The wiring substrate includes: an insulating film located over a first wiring and having a via; and a second wiring over the insulating film. The second wiring has a stacked structure including a first layer and a second layer covering the first layer. The second layer is in direct contact with the first wiring in the via. A thickness of the second layer in a region overlapping with the first layer is different from a thickness of the second layer in the via.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: November 30, 2021
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventor: Naoki Hayashi
  • Patent number: 11183486
    Abstract: Solid-state transducer (“SST”) dies and SST arrays having electrical cross-connections are disclosed herein. An array of SST dies in accordance with a particular embodiment can include a first terminal, a second terminal and a plurality of SST dies coupled between the first and second terminals with at least a pair of the SST dies being coupled in parallel. The plurality of SST dies can individually include a plurality of junctions coupled in series with an interconnection between each individual junction. Additionally, the individual SST dies can have a cross-connection contact coupled to the interconnection. In one embodiment, the array can further include a cross-connection between the cross-connection contacts on the pair of the SST dies.
    Type: Grant
    Filed: August 17, 2019
    Date of Patent: November 23, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Martin F. Schubert
  • Patent number: 11183669
    Abstract: A display apparatus is provided. The display apparatus includes a substrate including a plurality of pixels configured to emit light, wherein the amount of emitted light is at a maximum when emitted at an angle of more than 0 degrees. The display apparatus further includes an encapsulation layer covering the plurality of pixels and including a plurality of light collecting structures each having a three-dimensional quadrangular horn shape or a three-dimensional quadrangular truncated-horn shape.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: November 23, 2021
    Assignee: LG Display Co., Ltd.
    Inventors: Hyeongjun Lim, JiYeon Park, Taemin Kim
  • Patent number: 11177203
    Abstract: In a general aspect, an apparatus can include a leadframe including a plurality of leads disposed along a single edge of the apparatus. The apparatus can also include an assembly including a substrate and a plurality of semiconductor die disposed on the substrate, the assembly being mounted on the leadframe and an inductor having a first terminal and a second terminal. The first terminal of the inductor can be electrically coupled with the leadframe via a first conductive clip, where the first terminal of the inductor can be coupled with a contact pad of the first conductive clip. The second terminal of the inductor can be electrically coupled with the leadframe via a second conductive clip, where the second terminal of the inductor can be coupled with a contact pad of the second conductive clip. The leadframe, the assembly and the inductor can be arranged in a stacked configuration.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: November 16, 2021
    Assignee: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Jerome Teysseyre, Romel Manatad, Chung-Lin Wu, Bigildis Dosdos, Erwin Ian Almagro, Maria Cristina Estacio
  • Patent number: 11158509
    Abstract: A method for semiconductor manufacturing includes providing a substrate, forming a patterning layer over the substrate, and patterning the patterning layer to form a hole in the patterning layer. The method also includes applying a first directional etching to two inner sidewalls of the hole to expand the hole along a first direction and applying a second directional etching to another two inner sidewalls of the hole to expand the hole along a second direction that is different from the first direction.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: October 26, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Tien Shen, Chi-Cheng Hung, Chin-Hsiang Lin, Chien-Wei Wang, Ching-Yu Chang, Chih-Yuan Ting, Kuei-Shun Chen, Ru-Gun Liu, Wei-Liang Lin, Ya Hui Chang, Yuan-Hsiang Lung, Yen-Ming Chen, Yung-Sung Yen
  • Patent number: 11152470
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device is disclosed. The method can include a first process of causing a stacking fault of a first semiconductor layer to expand. The first semiconductor layer includes silicon carbide and a first element and is provided on a base body including silicon carbide. The first element includes at least one selected from the group consisting of N, P, and As. The method can include a second process of forming a second semiconductor layer on the first semiconductor layer after the first process. The second semiconductor layer includes silicon carbide and the first element. The method can include a third process of forming a third semiconductor layer on the second semiconductor layer. The third semiconductor layer includes silicon carbide and a second element. The second element includes at least one selected from the group consisting of B, Al, and Ga.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 19, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Johji Nishio, Chiharu Ota, Ryosuke Iijima
  • Patent number: 11145721
    Abstract: A semiconductor device fabrication method includes forming first and second spaced apart base regions and source regions in a substrate with a portion of a drift region therebetween. The method further includes forming at least a first trench extending laterally through the base region, the drift region and the source region, the first trench extending vertically partially through the source region. The method also includes forming a first oxide layer over the trenched upper surface, and forming a polysilicon layer over the first oxide layer. The polysilicon layer is patterned to form the gate conductor, and a drain contact is formed on a bottom surface of the semiconductor substrate.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Purdue Research Foundation
    Inventor: James A. Cooper
  • Patent number: 11145602
    Abstract: An alignment mark structure includes a dielectric layer. A trench is embedded in the dielectric layer. An alignment mark fills up the trench, wherein the alignment mark includes a metal layer covering the trench. A first material layer covers and contacts the metal layer. A second material layer covers and contacts the first material layer. A third material layer covers and contacts the second material layer. The first material layer, the second material layer, and the third material layer independently includes silicon nitride, silicon oxide, tantalum-containing material, aluminum-containing material, titanium-containing material, or a low-k dielectric having a dielectric constant smaller than 2.7, and a reflectance of the first material layer is larger than a reflectance of the second material layer, the reflectance of the second material layer is larger than a reflectance of the third material layer.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: October 12, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Ju Li, Jhih-Yuan Chen, Hsin-Jung Liu, Chau-Chung Hou, Yu-Lung Shih, Ang Chan, Fu-Chun Hsiao, Ji-Min Lin, Chun-Han Chen
  • Patent number: 11139303
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 5, 2021
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Grolles 2) SAS
    Inventors: Abderrezak Marzaki, Arnaud Regnier, Stephan Niel, Quentin Hubert, Thomas Cabout
  • Patent number: 11139391
    Abstract: An IGBT device comprises a super-junction structure arranged in a drift region and formed by a plurality of N-type pillars and a plurality of P-type pillars which are alternately arrayed. Device cell structures of the IGBT device are formed in an N-type epitaxial layer at the tops of super-junction cells. Each device cell structure comprises a body region, a gate structure and an emitter region. N-type isolation layers having a doping concentration greater than that of the N-type epitaxial layer are formed between the bottom surfaces of the body regions and the top surfaces of the P-type pillars and are used for isolating the body regions from the P-type pillars. The super-junction structure and the N-type isolation layers can increase the current density of the device, decrease the on-state voltage drop of the device and reduce the turn-off loss of the device.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 5, 2021
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventors: Jiye Yang, Junjun Xing, Jia Pan, Hao Li, Yi Lu, Longjie Zhao, Xukun Zhang, Xuan Huang, Chong Chen
  • Patent number: 11104990
    Abstract: Described herein are conformal films and methods for forming a conformal Group 4, 5, 6, 13 metal or metalloid doped silicon nitride dielectric film. In one aspect, there is provided a method of forming an aluminum silicon nitride film comprising the steps of: providing a substrate in a reactor; introducing into the reactor an at least one metal precursor which reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing into the reactor an organoaminosilane precursors to react on at least a portion of the surface of the substrate to provide a chemisorbed layer; introducing a plasma comprising nitrogen and an inert gas into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 31, 2021
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xinjian Lei, Moo-Sung Kim, Jianheng Li
  • Patent number: 11094790
    Abstract: A present invention includes the following: a third impurity region having a second conductivity type and disposed in an outer peripheral region that is the outer periphery of a cell arrangement region in which a unit cell is disposed; a field insulating film disposed in the outer peripheral region; an interlayer insulating film; a first main electrode disposed on the interlayer insulating film. The third impurity region includes a fourth impurity region having the second conductivity type, having a higher impurity concentration than the third impurity region. A gate wire and a gate pad are disposed in the outer peripheral region. The fourth impurity region is adjacent to the cell arrangement region, surrounds at least a region below the gate pad, and is electrically connected to the first main electrode.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: August 17, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasunori Oritsuki, Yoichiro Tarui
  • Patent number: 11081538
    Abstract: An organic light emitting diode (“OLED”) display device includes a substrate having a display region including a plurality of sub-pixel regions. A peripheral region at least partially surrounds the display region. A sub-pixel structure is disposed in each of the plurality of sub-pixel regions on the substrate. A circuit structure is disposed within the substrate in the sub-pixel region, and is located adjacent to the peripheral region.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: August 3, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Byungseok Choi, Hyung-Il Jeon, Sang-Hee Jang
  • Patent number: 11081488
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: August 3, 2021
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak Marzaki, Arnaud Regnier, Stephan Niel, Quentin Hubert, Thomas Cabout
  • Patent number: 11075231
    Abstract: Provided is a display apparatus including a substrate and a semiconductor layer including first and second semiconductor layers. A first gate insulating layer is formed on the semiconductor layer. A first gate wiring overlapping the first semiconductor layer is formed on the first gate insulating layer. A second gate insulating layer is formed on the first gate wiring. A second gate wiring overlapping the second semiconductor layer is formed on the second gate insulating layer. A third gate insulating layer covers the second gate wiring. A driving voltage line intersecting the first and second gate wirings is formed on the third gate insulating layer. A data line intersecting the first and second gate wirings is formed on the third gate insulating layer. A short circuit protection area is formed between the first gate wiring, the second gate wiring, the driving voltage line and the data line.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: July 27, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hyo Jin Kim, Won Kyu Lee, Seung Gyu Tae
  • Patent number: 11069757
    Abstract: An OLED display panel providing color compensation without overdriving light emitting units includes the light emitting units and a substrate. Each light emitting unit includes a light emitting element and an electrochromic element. The light emitting element is on a side of the electrochromic element away from the substrate. The electrochromic element includes first anode and cathode, and an electrochromic layer between them. The light emitting element includes second anode and cathode, and light emitting material between them. A portion of the second anode is shared with the first cathode. The present disclosure also provides a method for making such OLED display panel. The OLED display panel uses the electrochromic elements for color compensation, reducing the energy consumption of the display panel and prolonging service life.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 20, 2021
    Assignees: Interface Technology (ChengDu) Co., Ltd., INTERFACE OPTOELECTRONICS (SHENZHEN) CO., LTD., GENERAL INTERFACE SOLUTION LIMITED
    Inventors: Chin-Feng Chung, Hsien-Wei Chiang