Patents Examined by Wensing Kuo
  • Patent number: 8975173
    Abstract: A semiconductor device includes buried gates formed over a substrate, storage node contact plugs which are formed over the substrate and include a pillar pattern and a line pattern disposed over the pillar pattern, and a bit line structure which is formed over the substrate and isolates adjacent ones of the storage node contact plugs from each other.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: March 10, 2015
    Assignee: SK Hynix Inc.
    Inventors: Jong-Han Shin, Bo-Min Park
  • Patent number: 8969930
    Abstract: A gate stack structure comprises an isolation dielectric layer formed on and embedded into a gate. A sidewall spacer covers opposite side faces of the isolation dielectric layer, and the isolation dielectric layer located on an active region is thicker than the isolation dielectric layer located on a connection region. A method for manufacturing the gate stack structure comprises removing part of the gate in thickness, the thickness of the removed part of the gate on the active region is greater than the thickness of the removed part of the gate on the connection region so as to expose opposite inner walls of the sidewall spacer; forming an isolation dielectric layer on the gate to cover the exposed inner walls. There is also provided a semiconductor device and a method for manufacturing the same. The methods can reduce the possibility of short-circuit occurring between the gate and the second contact hole and can be compatible with the dual-contact-hole process.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: March 3, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhoou Yin, Zhijiong Luo, Huilong Zhu
  • Patent number: 8969994
    Abstract: An MPS diode includes a III-nitride substrate characterized by a first conductivity type and a first dopant concentration and having a first side and a second side. The MPS diode also includes a III-nitride epitaxial structure comprising a first III-nitride epitaxial layer coupled to the first side of the substrate, wherein a region of the first III-nitride epitaxial layer comprises an array of protrusions. The III-nitride epitaxial structure also includes a plurality of III-nitride regions of a second conductivity type, each partially disposed between adjacent protrusions. Each of the plurality of III-nitride regions of the second conductivity type comprises a first section laterally positioned between adjacent protrusions and a second section extending in a direction normal to the first side of the substrate. The MPS diode further includes a first metallic structure electrically coupled to one or more of the protrusions and to one or more of the second sections.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Avogy, Inc.
    Inventors: Madhan M. Raj, Brian Alvarez, David P. Bour, Andrew P. Edwards, Hui Nie, Isik C. Kizilyalli
  • Patent number: 8969198
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 8970048
    Abstract: A higher aspect ratio for upper level metal interconnects is described for use in higher frequency circuits. Because the skin effect reduces the effective cross-sectional area of conductors at higher frequencies, various approaches are described to reduce the effective RC delay in interconnects.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiro Inohara
  • Patent number: 8969200
    Abstract: An apparatus and method are provided for integrating TSVs into devices prior to device contacts processing. The apparatus includes a semiconducting layer; one or more CMOS devices mounted on a top surface of the semiconducting layer; one or more TSVs integrated into the semiconducting layer of the device wafer; at least one metal layer applied over the TSVs; and one or more bond pads mounted onto a top layer of the at least one metal layer, wherein the at least one metal layer is arranged to enable placement of the one or more bond pads at a specified location for bonding to a second device wafer. The method includes obtaining a wafer of semiconducting material, performing front end of line processing on the wafer; providing one or more TSVs in the wafer; performing middle of line processing on the wafer; and performing back end of line processing on the wafer.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 3, 2015
    Assignee: The Research Foundation of State University of New York
    Inventors: Jeremiah Hebding, Megha Rao, Colin McDonough, Matthew Smalley, Douglas Duane Coolbaugh, Joseph Piccirillo, Jr., Stephen G. Bennett, Michael Liehr, Daniel Pascual
  • Patent number: 8963285
    Abstract: A semiconductor device includes a semiconductor substrate having a first main surface in which a recess is formed. Further, the semiconductor device includes an electrical interconnect structure which is arranged at a bottom of the recess. A semiconductor chip is located in the recess. The semiconductor chip includes a plurality of chip electrodes facing the electrical interconnect structure. Further, a plurality of electrically conducting elements is arranged in the electrical interconnect structure and electrically connected to the plurality of chip electrodes.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 24, 2015
    Assignee: Infineon Technologies AG
    Inventors: Winfried Bakalski, Anton Steltenpohl
  • Patent number: 8962407
    Abstract: A method for enabling fabrication of RMG devices having a low gate height variation and a substantially planar topography and resulting device are disclosed. Embodiments include: providing on a substrate two dummy gate electrodes, each between a pair of spacers; providing a source/drain region between the two dummy gate electrodes; and forming a first nitride layer over the two dummy gate electrodes and the source/drain region, wherein the first nitride layer comprises a first portion over the dummy gate electrodes and a second portion over the source/drain region, and the second portion has an upper surface substantially coplanar with an upper surface of the dummy gate electrodes.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: February 24, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hong Yu, Wang Haiting, Yongsik Moon, James Lee, Huang Liu
  • Patent number: 8962408
    Abstract: A self-aligned carbon nanostructure transistor is formed by a method that includes providing a material stack including a gate dielectric material having a dielectric constant of greater than silicon oxide and a sacrificial gate material. Next, a carbon nanostructure is formed on an exposed surface of the gate dielectric material. After forming the carbon nanostructure, metal semiconductor alloy portions are formed self-aligned to the material stack. The sacrificial gate material is then replaced with a conductive metal.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Zhengwen Li, Fei Liu, Zhen Zhang
  • Patent number: 8962377
    Abstract: A method of fabricating a pixelated imager includes providing a substrate with bottom contact layer and sensing element blanket layers on the contact layer. The blanket layers are separated into an array of sensing elements by trenches isolating adjacent sensing elements. A sensing element electrode is formed adjacent each sensing element overlying a trench and defining a TFT. A layer of metal oxide semiconductor (MOS) material is formed on a dielectric layer overlying the electrodes and on an exposed upper surface of the blanket layers defining the sensing element adjacent each TFT. A layer of metal is deposited on each TFT and separated into source/drain electrodes on opposite sides of the sensing element electrode. The metal forming one of the S/D electrodes contacts the MOS material overlying the exposed surface of the semiconductor layer, whereby each sensing element in the array is electrically connected to the adjacent TFT by the MOS material.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: February 24, 2015
    Assignee: Cbrite Inc.
    Inventors: Chan-Long Shieh, Gang Yu
  • Patent number: 8952358
    Abstract: An organic light-emitting display apparatus including a substrate; a black matrix layer formed over the substrate; an insulating layer formed over the black matrix layer; a thin film transistor (TFT) formed over the insulating layer; a pixel electrode connected to the TFT; and an organic layer formed over the pixel electrode. At least one hole is formed in at least one of the black matrix layer and the insulating layer, in a region where the black matrix layer and the insulating layer overlap each other.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: February 10, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sun Park, Chun-Gi You, Jong-Hyun Park, Jin-Hee Kang, Yul Kyu Lee
  • Patent number: 8951877
    Abstract: When forming cavities in active regions of semiconductor devices in order to incorporate a strain-inducing semiconductor material, an improved shape of the cavities may be achieved by using an amorphization process and a heat treatment so as to selectively modify the etch behavior of exposed portions of the active regions and to adjust the shape of the amorphous regions. In this manner, the basic configuration of the cavities may be adjusted with a high degree of flexibility. Consequently, the efficiency of the strain-inducing technique may be improved.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Nicolas Sassiat, Carsten Grass, Jan Hoentschel, Ran Yan, Ralf Richter
  • Patent number: 8952492
    Abstract: An embodiment of an electrically trimmable electronic device, wherein a resistor of electrically modifiable material is formed by a first generally strip-shaped portion and by a second generally strip-shaped portion, which extend transversely with respect to one another and are in direct electrical contact in a crossing area. The first and second portions have respective ends connected to own contact regions, coupled to a current pulse source and are made of the same material or of the same composition of materials starting from a same resistive layer of the material having electrically modifiable resistivity, for example, a phase-change material, such as a Ge—Sb—Te alloy, or polycrystalline silicon, or a metal material used for thin-film resistors. The trimming is performed by supplying a trimming current to the second portion so as to heat the crossing area and modify the resistivity thereof, without flowing longitudinally in the first portion.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 10, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Stefania Maria Serena Privitera, Antonello Santangelo
  • Patent number: 8946815
    Abstract: The invention includes floating body transistor constructions containing U-shaped semiconductor material slices. The U-shapes have a pair of prongs joined to a central portion. Each of the prongs contains a source/drain region of a pair of gatedly-coupled source/drain regions, and the floating bodies of the transistors are within the central portions. The semiconductor material slices can be between front gates and back gates. The floating body transistor constructions can be incorporated into memory arrays, which in turn can be incorporated into electronic systems. The invention also includes methods of forming floating body transistor constructions, and methods of incorporating floating body transistor constructions into memory arrays.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Venkatesan Ananthan
  • Patent number: 8946708
    Abstract: The band tail state and defects in the band gap are reduced as much as possible, whereby optical absorption of energy which is in the vicinity of the band gap or less than or equal to the band gap is reduced. In that case, not by merely optimizing conditions of manufacturing an oxide semiconductor film, but by making an oxide semiconductor to be a substantially intrinsic semiconductor or extremely close to an intrinsic semiconductor, defects on which irradiation light acts are reduced and the effect of light irradiation is reduced essentially. That is, even in the case where light with a wavelength of 350 nm is delivered at 1×1013 photons/cm2·sec, a channel region of a transistor is formed using an oxide semiconductor, in which the absolute value of the amount of the variation in the threshold voltage is less than or equal to 0.65 V.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Kosei Noda
  • Patent number: 8946668
    Abstract: Disclosed is a semiconductor device including a resistive change element between a first wiring and a second wiring, which are arranged in a vertical direction so as to be adjacent to each other, with an interlayer insulation film being interposed on a semiconductor substrate. The resistive change element includes a lower electrode, a resistive change element film made of a metal oxide and an upper electrode. Since the upper electrode on the resistive change element film is formed as part of a plug for the second wiring, a structure in which a side surface of the upper electrode is not in direct contact with the side surface of the metal oxide or the lower electrode is provided so that it is possible to realize excellent device characteristics, even when a byproduct is adhered to the side wall of the metal oxide or the lower electrode in the etching thereof.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: February 3, 2015
    Assignee: NEC Corporation
    Inventors: Yukishige Saito, Kimihiko Ito, Hiromitsu Hada
  • Patent number: 8933507
    Abstract: The present disclosure relates to a power MOSFET device having a relatively low resistance hybrid gate electrode that enables good switching performance. In some embodiments, the power MOSFET device has a semiconductor body. An epitaxial layer is disposed on the semiconductor body. A hybrid gate electrode, which controls the flow of electrons between a source electrode and a drain electrode, is located within a trench extending into the epitaxial layer. The hybrid gate electrode has an inner region having a low resistance metal, an outer region having a polysilicon material, and a barrier region disposed between the inner region and the outer region. The low resistance of the inner region provides for a low resistance to the hybrid gate electrode that enables good switching performance for the power MOSFET device.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 8932913
    Abstract: To provide a semiconductor device which prevents defects and achieves miniaturization. A projecting portion or a trench (a groove portion) is formed in an insulating layer and a channel formation region of a semiconductor layer is provided in contact with the projecting portion or the trench, so that the channel formation region is extended in a direction perpendicular to a substrate. Thus, miniaturization of the transistor can be achieved and an effective channel length can be extended. In addition, before formation of the semiconductor layer, an upper-end corner portion of the projecting portion or the trench with which the semiconductor layer is in contact is subjected to round chamfering, so that a thin semiconductor layer can be formed with good coverage.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 13, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Akihiro Ishizuka
  • Patent number: 8932887
    Abstract: A method for manufacturing an LED (light emitting diode) with transparent ceramic is provided, which includes: adding quantitative fluorescent powder into transparent ceramic powder, wherein the doped ratio of the fluorescent powder is 0.01-100 wt %; preparing the fluorescent transparent ceramic using ceramic apparatus and process, after fully mixing the raw material; assembling the prepared fluorescent transparent ceramic and a semiconductor chip to form the LED device. The method assembles the fluorescent transparent ceramic and a semiconductor chip to form the LED device by replacing the fluorescent powder layer and the epoxy resin package casting of the traditional LED with fluorescent transparent ceramic. The fluorescent transparent ceramic is used as the package cast and fluorescent material, and the LED device manufactured through the method has more excellent performance.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 13, 2015
    Assignee: Bright Crystals Technology, Inc.
    Inventors: Muyun Lei, Zhen Li, Zailiang Lou, Yanmin Zhao, Qinghai Song, Yongliang Yang
  • Patent number: 8927406
    Abstract: A method for fabricating a dual damascene metal gate includes forming a dummy gate onto a substrate, disposing a protective layer on the substrate and the dummy gate, and growing an expanding layer on sides of the dummy gate. The method further includes removing the protective layer, forming a spacer around the dummy gate, and depositing and planarizing a dielectric layer. The method further includes selectively removing the expanding layer, and removing the dummy gate.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Wang, Wen-Chu Hsiao, Ying-Min Chou, Hsiang-Hsiang Ko