Patents Examined by Whitney Moore
  • Patent number: 11598845
    Abstract: In one aspect, a system for obtaining dielectric properties of an object is disclosed, which comprises a plurality of transceivers for generating radiation in the microwave or millimeter-wave region of the electromagnetic spectrum. The transceivers are positioned in spatially fixed relationships relative to one another. The system further includes a controller for selectively activating the transceivers for irradiating at least a portion of the object and detecting at least a portion of the radiation reflected from said portion of the object in response to the irradiation, where each of the activated transceivers generates a signal in response to detection of the reflected radiation. The reflected signals are analyzed to determine a plurality of reflectivity coefficients corresponding to different discrete locations of the object, and the reflectivity coefficients are used to determine the complex permittivity of the discrete locations.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: March 7, 2023
    Assignee: Plymouth Rock Technologies Inc.
    Inventors: Stuart William Harmer, Dana E. Wheeler
  • Patent number: 11592521
    Abstract: Disclosed herein are systems and methods for estimating target ranges, angles of arrival, and speed using optimization procedures. Target ranges are estimated by performing an optimization procedure to obtain a denoised signal, performing a correlation of a transmitted waveform and the denoised signal, and using a result of the correlation to determine an estimate of a distance between the sensor and at least one target. Target angles of arrival are estimated by determining ranges at which targets are located, and, for each range, constructing an array signal from samples of received echo signals, and using the array signal, performing another optimization procedure to estimate a respective angle of arrival for each target of the at least one target. Doppler shifts may also be estimated using another optimization procedure. Certain of the optimization procedures use atomic norm techniques.
    Type: Grant
    Filed: December 12, 2020
    Date of Patent: February 28, 2023
    Assignee: Neural Propulsion Systems, Inc.
    Inventors: Babak Hassibi, Behrooz Rezvani
  • Patent number: 11579281
    Abstract: A method and device for suppressing range ambiguity and a computer readable storage medium are provided. The method includes: determining a pulse timing relationship of a transmission signal; determining orthogonal nonlinear frequency modulation signals; modulating the transmission signal by using the orthogonal nonlinear frequency modulation signals; transmitting the modulated transmission signal according to the pulse timing relationship, and determining echo data of the modulated transmission signal; and generating an image according to a polarization scattering matrix for the echo data of the modulated transmission signal.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: February 14, 2023
    Assignee: Institute of Electronics, Chinese Academy of Sciences
    Inventors: Yu Wang, Dacheng Liu, Pengfei Zhao, Yunkai Deng
  • Patent number: 11579314
    Abstract: A traffic radar system comprises a first radar transceiver, a second radar transceiver, a speed determining element, and a processing element. The first radar transceiver transmits and receives radar beams and generates a first electronic signal corresponding to the received radar beam. The second radar transceiver transmits and receives radar beams and generates a second electronic signal corresponding to the received radar beam. The speed determining element determines and outputs a speed of the patrol vehicle. The processing element is configured to receive a plurality of digital data samples derived from the first or second electronic signals, receive the speed of the patrol vehicle, process the digital data samples to determine a relative speed of at least one target vehicle in the front zone or the rear zone, and convert the relative speed of the target vehicle to an absolute speed using the speed of the patrol vehicle.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: February 14, 2023
    Assignee: Kustom Signals, Inc.
    Inventors: Maurice Shelton, Roger Adwell
  • Patent number: 11569479
    Abstract: A multilayer encapsulation, a method for encapsulating and an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a first electrode layer, an organic light-emitting layer stack abutting the first electrode layer, a second electrode layer abutting the light-emitting layer stack and a multilayer encapsulation abutting the second electrode layer, wherein the multilayer encapsulation comprises a barrier layer and a planarization layer, wherein the planarization layer abuts the second electrode layer, and wherein the planarization layer is arranged between the second electrode layer and the barrier layer.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Sebastian Wittmann, Arne Fleissner, Erwin Lang
  • Patent number: 11567211
    Abstract: Systems, methods, and other embodiments relate to determining the speed of a vehicle. In one embodiment, a method includes receiving a first frame of data generated by a first sensor of a vehicle, the first frame of data including a first set of angular positions associated with a first set of objects in the environment. The method includes receiving a second frame of data generated by a second sensor of the vehicle, the second frame of data including a second set of angular positions associated with a second set of objects in the environment. The method includes generating a speed estimate for the vehicle in relation to the first set of objects and the second set of objects based at least in part on the first set of angular positions of the first frame of data and the second set of angular positions of the second frame of data.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: January 31, 2023
    Assignee: WOVEN PLANET NORTH AMERICA, INC.
    Inventor: Farzad Cyrus Foroughi Abari
  • Patent number: 11562285
    Abstract: Methods, systems, and apparatus for training quantum evolutions using sub-logical controls. In one aspect, a method includes the actions of accessing quantum hardware, wherein the quantum hardware includes a quantum system comprising one or more multi-level quantum subsystems; one or more control devices that operate on the one or more multi-level quantum subsystems according to one or more respective control parameters that relate to a parameter of a physical environment in which the multi-level quantum subsystems are located; initializing the quantum system in an initial quantum state, wherein an initial set of control parameters form a parameterization that defines the initial quantum state; obtaining one or more quantum system observables and one or more target quantum states; and iteratively training until an occurrence of a completion event.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: January 24, 2023
    Assignee: Google LLC
    Inventors: Ryan Babbush, Hartmut Neven
  • Patent number: 11555888
    Abstract: A method for calibrating a vehicular radar sensing system includes disposing two spaced apart calibrating radars at respective transmitting locations that are spaced from a vehicle calibration location at an end of line portion of a vehicle assembly line, and moving a vehicle along the vehicle assembly line, the vehicle including an electronic control unit (ECU) and a vehicular radar operable to sense exterior of the vehicle. Signals are transmitted via the first and second calibrating radars at the transmitting locations and, with the vehicle at the vehicle calibration location, the plurality of radar receivers of the vehicular radar receive the transmitted signals transmitted by the first and second calibrating radars, and the vehicular radar generates an output that is processed at the ECU. Responsive to processing at the ECU of the output of the vehicular radar, misalignment of the vehicular radar at the vehicle is determined.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: January 17, 2023
    Assignee: MAGNA ELECTRONICS INC.
    Inventors: Sebastian Pliefke, Jagmal Singh, Sergio D. Biarge
  • Patent number: 11555919
    Abstract: A system includes a computer including a processor and a memory. The memory includes instructions such that the processor is programmed to: receive, from a radar sensor of a vehicle, radar data indicative of a stationary object proximate to the radar sensor; receive, from a non-radar sensor of the vehicle, vehicle state data indicative of a vehicle state, the vehicle state data indicative of at least a longitudinal velocity and a yaw rate of the vehicle; determine an orientation estimate and an offset estimate of the radar sensor based on the radar data and the vehicle state data; and determine whether to actuate a vehicle system based on at least one of the orientation estimate or the offset estimate.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 17, 2023
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Douglas James McEwan, Timothy Stolzenfeld
  • Patent number: 11555918
    Abstract: Examples disclosed herein relate to an antenna system in a radar system for object detection with a sounding signal. The antenna system includes a radiating array of elements configured to transmit a reference signal and an antenna controller coupled to the radiating array of elements. The antenna controller is configured to detect a set of reflections of the reference signal from an object. The antenna is configured to determine a location of the object and a mobility status from the set of reflections. The antenna controller is also configured to generate signaling indicating the location and mobility status of the object as output to identify a target object different from the object. Other examples disclosed herein relate to a radar system and a method of object detection with the radar system.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: January 17, 2023
    Assignee: METAWAVE Corporation
    Inventor: Maha Achour
  • Patent number: 11550048
    Abstract: This document describes techniques and systems that enable a mobile device-based radar system (104) for providing a multi-mode interface (114). A radar field (110) is used to enable a user device (102, 702) to accurately determine a presence or threshold movement of a user near the user device. The user device provides a multi-mode interface having at least first and second modes and providing a black display or a low-luminosity display in the first mode. The user device detects, based on radar data and during the first mode, a presence or threshold movement by the user relative to the user device and responsively changes the multi-mode interface from the first mode to the second mode. Responsive to the change to the second mode, the user device provides visual feedback corresponding to the implicit interaction by adjusting one or more display parameters of the black display or the low-luminosity display.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 10, 2023
    Assignee: Google LLC
    Inventors: Eiji Hayashi, Vignesh Sachidanandam, Leonardo Giusti, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Patent number: 11536823
    Abstract: A transceiver circuit included in a computer system may include multiple antennas, a transmitter circuit and a receiver circuit. The transmitter circuit may store an identifier number and generate multiple numbers using the stored identifier number. The transmitter circuit may also generate a transmit signal that include multiple pulses, where a. given pulse may include multiple chirps encoded with the multiple numbers. The receiver circuit may receive a reflected version of the transmit signal and generate an output signal using the reflected version of the transmit signal.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: December 27, 2022
    Assignee: Apple Inc.
    Inventor: Zohar Agon
  • Patent number: 11527825
    Abstract: Systems, methods, and computer-readable media are described for combining digital and analog beamsteering in a channelized antenna array. In some examples, a method can include receiving one or more signals at each of a plurality of groups of antenna elements, each group of antenna elements defining a respective channel from a plurality of channels, and steering, by each respective channel and using analog steering, the one or more signals in a respective direction to yield a steered analog signal pattern. The method can further include converting the steered analog signal pattern associated with each respective channel into a respective digital signal and, based on the respective digital signal, generating, using digital steering, digital signal patterns steered within the steered analog signal pattern associated with the respective digital signal.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: December 13, 2022
    Assignee: Fortem Technologies, Inc.
    Inventors: Matthew Robertson Morin, Brandon Robert Hicks, James David MacKie, Bryan Alan Davis
  • Patent number: 11520004
    Abstract: According to an aspect, method of enhancing a resolution in a radar system having an antenna aperture comprises measuring a first radiation pattern corresponding to a first set of receiving antennas by feeding a known radio frequency (RF) signal over the first set of receiving antennas, wherein the first set of radiation due to an impairment, coherently combining an interpolated radiation pattern with a received radar signal received by the set of receiving antenna when employed for an object detection, to generate a high signal to noise ratio (SNR) received signal, and iteratively combining the high SNR received signal with the interpolated signal to reduce the error due to the impairment.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 6, 2022
    Inventors: Sachin Bharadwaj, Sai Gunaranjan Pelluri, Sumeer Bhatara, Apu Sivadas
  • Patent number: 11522288
    Abstract: A signal receiving method and apparatus, a computer readable storage medium and an electronic device are disclosed. The signal receiving method includes: acquiring a maximum scanning angle range of a phased-array antenna; and reducing the maximum scanning angle range by a binary search method, based on power of signals received by the phased-array antenna, until a difference between a maximum and a minimum of a reduced scanning angle range is less than a set value; and using the reduced scanning angle range to receive a signal.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 6, 2022
    Assignee: Beijing BOE Technology Development Co., Ltd.
    Inventor: Zongmin Liu
  • Patent number: 11513186
    Abstract: A system may include a computing device including a processor. The processor may be configured to: for correlation threads having populated queues, execute at least some of the correlation threads in parallel, wherein execution of each of the at least some of the correlation threads results in at least one of: at least one new radar track or at least one updated existing radar track; and output each new radar track and each updated existing radar track.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: November 29, 2022
    Assignee: Rockwell Collins, Inc.
    Inventor: Clint W. McLaughlin
  • Patent number: 11506750
    Abstract: A dual or quad aperture radar array switches between states in between radiation cycles to acquire both sum and difference beams. The beams are then processed together to produce a central lobe enhanced beam and a side lobe enhanced beam via difference computations. During interleaved cycles, beams may be processed by Taylor weighting, split Taylor weighting, or Bayliss weighting. Multiple sets of switching cycles may be processed together to refine results.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: November 22, 2022
    Assignee: Rockwell Collins, Inc.
    Inventor: James B. West
  • Patent number: 11506754
    Abstract: A method for close-range detection, includes transmitting, via a radar transceiver, radar signals to detect an object. The method also includes determining whether the object includes a pattern code based on reflections of the radar signals received by the radar transceiver. In response to determining that the object includes the pattern code, the method includes identifying range information about a range between the electronic device and the pattern code. The method further includes selecting, based on the range information, one or more signals from the reflections of the radar signals that are reflected off of the pattern code. Additionally, the method includes identifying, based on the one or more signals, information about the pattern code.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: November 22, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wenxun Qiu, Vutha Va, Kuldeep Gill, Boon Loong Ng, Junsu Choi, Sungchul Park
  • Patent number: 11500061
    Abstract: A method for calibrating two receiving units of a radar sensor that includes an array of receiving antennas formed by two sub-arrays and an evaluation unit, which is designed to carry out an angle estimation for located radar targets based on phase differences between the signals received by the receiving antennas, each receiving unit including parallel reception paths for the signals of the receiving antennas of one of the sub-arrays. The method includes: analyzing the received signals and deciding whether a multi-target scenario or a single-target scenario is present, in the case of a single-target scenario, measuring phases of the signals received in the sub-arrays and calculating a phase offset between the two sub-arrays, and calibrating the phases in the two receiving units based on the calculated offset.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: November 15, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Benedikt Loesch, Klaus Baur, Marcel Mayer, Michael Schoor
  • Patent number: 11480655
    Abstract: Example embodiments relate to transmitter-receiver leakage suppression in integrated radar systems. One embodiment includes a front-end for a radar system. The front-end includes a transmit path that includes a power amplifier and a transmit antenna. The transmit path is configured to transmit a transmit signal. The front-end also includes a receive path that includes a receive antenna and a low-noise amplifier. The receive path is configured to receive at least a leakage from the transmit path. The receive path is configured to generate an amplified signal of the leakage. Further, the front-end also includes a reference path. In addition, the front-end includes a compensation unit in the reference path. The compensation unit is configured to generate compensation for a leakage path between the transmit path and the receive path. The compensation unit is configured to apply the generated compensation to the reference signal to generate a compensated reference signal.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: October 25, 2022
    Assignee: IMEC VZW
    Inventors: Akshay Visweswaran, Kristof Vaesen