Patents Examined by William J Levicky
  • Patent number: 11698193
    Abstract: A control method of stepwise and stepless linear adjustment of a gas oven includes step 1: obtaining the setting temperature of the gas oven; step 2: obtaining the temperature inside the gas oven; step 3: determining the low temperature threshold, high temperature threshold and preset flame level according to the setting temperature, wherein the high temperature threshold is greater than the low temperature threshold; step 4: ensuring the temperature inside the gas oven is between the low temperature threshold and the high temperature threshold; step 5: if it exceeds, determining the change trend of the temperature inside the gas oven; step 6: when the change trend of the temperature inside the gas oven rises or falls, adjusting the flame level of the gas oven to the preset flame level.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: July 11, 2023
    Assignee: JIANGSU JIUHUI TECHNOLOGY CO., LTD.
    Inventors: Lanyu Yang, Tao Chen, Xifeng Yang, Jiuhui Bian, Wei Gu, Wenbin Ma, Ming He, Zhengbing Zhu, Xuedan Liu
  • Patent number: 11684784
    Abstract: An intracardiac ventricular pacemaker is configured to operate in in a selected one of an atrial-tracking ventricular pacing mode and a non-atrial tracking ventricular pacing mode. A control circuit of the pacemaker determines at least one motion signal metric from the motion signal, compares the at least one motion signal metric to pacing mode switching criteria, and, responsive to the pacing mode switching criteria being satisfied, switches from the selected one of the non-atrial tracking pacing mode and the atrial tracking pacing mode to the other one of the non-atrial tracking pacing mode and the atrial tracking pacing mode for controlling ventricular pacing pulses delivered by the pacemaker.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 27, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Yong K. Cho, Wade M. Demmer, Mark K. Erickson, Vincent E. Splett
  • Patent number: 11660696
    Abstract: A welding current source for providing a welding current and a welding voltage at an output in order to carry out an arc welding process includes an input-side rectifier, an inverter, which is operated with a switching frequency, a transformer having a primary winding and at least two secondary windings, at least two rectifiers arranged between the secondary windings and the output, and at least one capacitor and one load resistor at the output. At least one current-limiting reactor is arranged on the second secondary winding and the load resistor for discharging the capacitor, which can be charged by the current-limiting reactor, the current-limiting reactor, and the capacitor are dimensioned in such a way that the maximum value of the no-load voltage at the output is greater than the voltage corresponding to the transmission ratio of the primary winding to the secondary winding of the transformer.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: May 30, 2023
    Assignee: Fronius International GmbH
    Inventors: Andreas Prinz, Michael Muehlberger
  • Patent number: 11654286
    Abstract: Embodiments discussed herein facilitate implementation of one or more DBS pulsing strategies that maximize synaptic suppression with the minimum number of stimuli. One example embodiment comprises a non-transitory computer-readable medium storing computer-executable instructions that, when executed, cause a processor to perform operations, comprising: applying deep brain stimulation (DBS) electrical stimulation according to a first mode to cause steady-state excitatory post-synaptic current (EPSC) suppression in a set of synapses; and applying DBS electrical stimulation according to a second mode that is different than the first mode to maintain EPSC suppression in the set of synapses.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 23, 2023
    Assignee: Case Western Reserve University
    Inventors: Cameron McIntyre, Amir Ali Farokhniaee
  • Patent number: 11602803
    Abstract: A laser processing system capable of reliably determining an abnormality in a jet during laser process. The laser processing system comprises a nozzle including an emission opening configured to emit a jet of an assist gas along an optical axis of a laser beam, the nozzle being configured to form a maximum point of velocity of the jet at a position away from the emission opening; a measuring instrument configured to measure any of the velocity of the jet and a sound generated by the jet impinging on a workpiece; and an abnormality determination section configured to determine whether or not output data of the measuring instrument is different from reference data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: March 14, 2023
    Assignee: Fanuc Corporation
    Inventor: Takashi Izumi
  • Patent number: 11596314
    Abstract: Methods, systems, and apparatuses for detecting seizure events are disclosed, including a system for identification of an increased risk of a severe neurological event. The system may include an electroencephalogram (“EEG”) monitoring unit configured to collect EEG data from the patient during at least a postictal phase or one or more seizures and a processing unit configured to receive the EEG data from the EEG monitoring unit. The processing unit is configured to detect postictal EEG suppression from the EEG data and to identify the increased risk of the severe neurological event based on the detected postictal EEG suppression. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: March 7, 2023
    Assignee: LivaNova USA, Inc.
    Inventor: Shivkumar Sabesan
  • Patent number: 11596307
    Abstract: The present disclosure relates to systems and methods for activating a circuit of an implant device. Consistent with one implementation, an implant device is provided with a sensor including a working electrode (WE) and a counter electrode (CE). The sensor may be configured to generate a first current at the CE when the implant device is implanted in a body of a subject. A sensing circuit may also be provided that is electrically coupled to the WE of the sensor. The sensing circuit may be activated based on the first current and utilize the sensor to measure one or more parameters of an individual or other subject.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: March 7, 2023
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Alireza Dastgheib, Johan Vanderhaegen
  • Patent number: 11577094
    Abstract: Systems and methods for treating sexual dysfunction using transcranial photobiomodulation (t-PBM) with near infrared light (NIR) are provided. In particular, a device configured for treating a disorder of a subject, the device can have a power source and a light source configured to receive power from the power source to cause the light source to emit near infrared light, wherein the near-infrared light has a wavelength of 600 nm to 1400 nm. The device has a processor and a housing configured to position the light source to deliver the near infrared light to a region of interest of the subject via transcranial photobiomodulation in a dosimetry and duration sufficient to treat the disorder.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: February 14, 2023
    Assignee: The General Hospital Corporation
    Inventor: Paolo Cassano
  • Patent number: 11577083
    Abstract: A neurostimulation system provides for capture verification and stimulation intensity adjustment to ensure effectiveness of vagus nerve stimulation in modulating one or more target functions in a patient. In various embodiments, stimulation is applied to the vagus nerve, and evoked responses are detected to verify that the stimulation captures the vagus nerve and to adjust one or more stimulation parameters that control the stimulation intensity.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 14, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Juan Gabriel Hincapie Ordonez, David J. Ternes, Jason J. Hamann, Stephen B. Ruble
  • Patent number: 11564743
    Abstract: Device and method for selectively ablating a submucosal layer of a duodenal wall and/or of sensory neurons therein, including a laser transmitting element coupled with the catheter body and configured to transmit a laser beam having a spot diameter of less than 200 microns and to provide an ablative dose of 0.5-2.5 J/mm; wherein the laser beam is configured to selectively ablate an area of the submucosal layer that is at least twice the size of the spot diameter, while essentially preventing damage of the surrounding mucosal, muscularis and/or serosal layers of the duodenal wall; and an expandable member configured to stretch the duodenal wall and to generate a fixed distance between the catheter's laser transmitting element and the duodenal wall.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: January 31, 2023
    Assignee: DIGMA MEDICAL LTD.
    Inventors: Ilan Ben Oren, Boaz Behar
  • Patent number: 11541227
    Abstract: A system for facilitating resuscitation includes: a first electrode assembly having a therapy side and a first motion sensor; a second electrode assembly having a therapy side and a second motion sensor; processing circuitry operatively connected to and programmed to receive and process signals from the first and second motion sensors to estimate at least one of a chest compression depth and rate during administration of chest compressions and to compare the chest compression depth or rate to a desired range; and an output device for providing instructions to a user to administer chest compressions based on the comparison of the estimated chest compression depth or rate to the desired range. One or both of the electrode assemblies may be constructed so that the conductive therapeutic portion is able to maintain substantial conformance to the anatomy of the patient when coupled thereto.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 3, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Annemarie Silver, Fred Geheb, Lisa Campana, Paolo Giacometti, Gideon Butler, Gary A. Freeman, Christopher Joseph Desmarais, Ian Durrant
  • Patent number: 11529523
    Abstract: A bridge device includes a housing, a plurality of electrodes exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A controller is disposed within the housing. A first communications module is operably coupled to the controller and to the at least two of the plurality of electrodes. The first communications module is configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes using conducted communication. A second communications module is operably coupled to the controller and is configured to allow the controller to communicate with a remote device external to the patient.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 20, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Ron A. Balczewski, William J. Linder, Keith R. Maile
  • Patent number: 11524166
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: December 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 11504538
    Abstract: A system includes a pulse generator including a can electrode and a lead couplable to the pulse generator, the lead including a distal coil electrode and a proximal coil electrode, wherein both of the coil electrodes are electrically uncoupled from the can electrode such that a unipolar sensing vector is provided between at least one of the coil electrodes and the can electrode.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, Ron A. Balczewski
  • Patent number: 11497916
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: November 15, 2022
    Assignee: AXONICS, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 11497921
    Abstract: Systems, methods and implantable devices configured to provide cardiac resynchronization therapy and/or bradycardia pacing therapy. A first device located in the heart of the patient is configured to receive a communication from a second device and deliver a pacing therapy in response to or in accordance with the received communication. A second device located elsewhere is configured to determine an atrial event has occurred and communicate to the first device to trigger the pacing therapy. The second device may be configured for sensing the atrial event by the use of vector selection and atrial event windowing, among other enhancements. Exception cases are discussed and handled as well.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: November 15, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Krzysztof Z. Siejko, William J. Linder, Keith R. Maile, Amy Jean Brisben, Keith L. Herrmann, Brendan E. Koop, Benjamin J. Haasl
  • Patent number: 11478603
    Abstract: A method of transplanting a desired emotional state from a donor to a recipient, comprising determining an emotional state of the donor; recording neural correlates of the emotional state of the donor who is in the desired emotional state; analyzing neural correlates of the emotional state of the donor to decode at least one of a temporal and a spatial pattern corresponding to the desirable emotional state; converting said at least one of a temporal and a spatial pattern corresponding to the desirable emotional state into a neurostimulation pattern; storing the neurostimulation pattern in the nonvolatile memory; retrieving the neurostimulation pattern from the nonvolatile memory; stimulating the recipients brain with at least one stimulus modulated with the neurostimulation pattern to induce the desired emotional state in the recipient.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: October 25, 2022
    Assignee: Neuroenhancement Lab, LLC
    Inventor: Alexander Poltorak
  • Patent number: 11464971
    Abstract: A system for selectively blocking nerve fiber activity in a target nerve is provided. The system includes one or more electrodes. The system further includes an electronic control system electrically attached to each electrode to deliver electrical stimulation to a target nerve to block nerve signal transmission of C-fibers in the target nerve such that the nerve signal transmission of A-fibers in the target nerve providing motor function and/or low-threshold sensory function is not blocked. A method of delivering electrical stimulation to selectively block nerve fiber activity in a target nerve and a kit for performing a procedure to selectively block nerve fiber activity are disclosed.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: October 11, 2022
    Assignee: Avent, Inc.
    Inventors: Eric A. Schepis, Phillip A. Schorr, Jeremy D. Ollerenshaw, Roger D. Massengale, Joshua D. White
  • Patent number: 11464984
    Abstract: Systems, devices, and methods for monitoring for atrial capture are disclosed. Such a method, for use within an implantable system including an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP), includes storing within a memory of the vLP a paced atrial activation morphology template corresponding to far-field atrial signal components expected to be present in a vEGM sensed by the vLP when an atrial pacing pulse delivered by the aLP captures atrial tissue. The vLP senses a vEGM and compares a morphology of a portion of the sensed vEGM to the paced atrial activation morphology template to determine whether a match therebetween is detected. Additionally, the vLP determines whether atrial capture occurred or failed to occur (responsive to an atrial pacing pulse), based on whether the vLP detects a match between the morphology of a portion of the sensed vEGM and the paced atrial activation morphology template.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: October 11, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Gene A. Bornzin
  • Patent number: 11452638
    Abstract: Ultra-short pulsed laser radiation is applied to a patient's eye to create a row of bubbles oriented perpendicular to the axis of vision. The row of bubbles leads to a region of the eye to be ablated. In a second step, a femtosecond laser beam guided through the row of bubbles converts it to a channel perpendicular to the axis of vision. In a third step, a femtosecond laser beam is guided through the channel to ablate a portion of the eye. Using a femtosecond laser with intensity in the range of 1011-1015 W/cm2 for the second and third steps facilitates multi-photon ablation that is practically devoid of eye tissue heating. Creating bubbles in the first step increases the speed of channel creation and channel diameter uniformity, thereby increasing the precision of the subsequent multi-photon ablation.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: September 27, 2022
    Inventor: Nicholas S. Siegele