Patents Examined by William J Levicky
  • Patent number: 11103716
    Abstract: A control module for an electrical stimulation system includes an electronic subassembly disposed within an electronics housing. A power assembly extends outwardly from the electronics housing and collectively with the electronics housing forms a sealed cavity. The power assembly includes a power source; a conduit assembly extending from the power source to the electronics housing; and one or more power conductors extending along the conduit assembly and electrically coupling the power source to the electronic subassembly. The control module further includes one or more connector assemblies. Each of the one or more connector assemblies includes a connector lumen configured to receive a lead; connector contacts arranged along the connector lumen and in electrical communication with the electronic subassembly; and connector conductors electrically coupled to the connector contacts.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 31, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jeffery Van Funderburk, Zdzislaw Bernard Malinowski
  • Patent number: 11101036
    Abstract: Devices, systems, and methods are disclosed for relaying information from a cardiac pacemaker to an external device. Logic on the pacemaker modulates a heartbeat clock of the pacemaker to encode information onto a blood pressure sequence by adding or subtracting a small subinterval to or from a pulse repetition interval of the pacemaker. A muscle stimulator beats the heart according to the modulated sequence. A monitoring device external to the body monitors the blood pressure to retrieve the encoded information, or message. The encoded information is then decoded to determine the information in the message. This information may concern the pacemaker as well as other devices within the body that communicate with the pacemaker such as blood monitors, etc. Since the message is conveyed via simple modulation of the heart beat intervals, no separate transmitter is required in the pacemaker which would otherwise increase cost and decrease battery life.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 24, 2021
    Assignee: AT&T Mobility II LLC
    Inventors: Sheldon Kent Meredith, Brandon B. Hilliard, Mario Kosseifi
  • Patent number: 11090484
    Abstract: Devices and methods are disclosed for a stimulator unit in a medical device, such as an implantable component of a cochlear implant. In embodiments, the stimulator unit comprises a bottom wall configured to be substantially contacting a temporal bone of a recipient, and a top wall positioned opposite the bottom wall, wherein a cross section of the stimulator unit has an outer profile substantially parallel to the bottom wall and the top wall.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: August 17, 2021
    Assignee: Cochlear Limited
    Inventors: Grahame Walling, James G. E. Smith, Julia Mitchell, Krishna Sivaraman, Graeme Vincent
  • Patent number: 11090491
    Abstract: A medical apparatus for a patient comprises an implantable system. The implantable system comprises a first implantable device comprising: at least one implantable functional element configured to deliver stimulation energy to tissue of the patient; and an implantable controller configured to provide a stimulation waveform to the at least one implantable functional element, the stimulation waveform comprising one or more stimulation parameters. The apparatus is configured to randomly vary at least one of the one or more stimulation parameters. Methods of providing stimulation energy with randomly varying stimulation parameters are also provided.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: August 17, 2021
    Assignee: Nalu Medical, Inc.
    Inventors: Lakshmi Narayan Mishra, James C. Makous, Lee Fason Hartley, Daniel M. Pivonka, J. Christopher Flaherty
  • Patent number: 11083887
    Abstract: Incorrect connection or mapping of leads' proximal terminals to the ports of an Implantable Stimulator Device (ISD), such as an implantable pulse generator or an external trial stimulator, is a concern, and this disclosure is directed to use of measurement and identification algorithms to either determine that leads are properly connected to their assigned ISD ports, or to determine which leads are connected to the ports even if the leads are not preassigned to the ports. Particular focus is given in the disclosed technique to assessing leads that comprise larger number of electrodes than are supported at each port, and thus have more than one proximal terminal that connect to more than one port of the ISD.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: August 10, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kelsey Bower, G. Karl Steinke, Hemant Bokil, Ara Sarian
  • Patent number: 11071869
    Abstract: Medical devices allow for the complete removal of a portion of an implantable component that contains a magnet. Such structure allows a recipient to undergo MRI procedures without interference from the implanted magnet. The magnet can also be contained within a larger, non-magnetic chassis that acts as an enlarged lever arm having a greater torque resistance against the generated magnetic forces.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: July 27, 2021
    Assignee: Cochlear Limited
    Inventors: Charles Roger Leigh, Padraig Hurley
  • Patent number: 11071872
    Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: July 27, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Matthew G. Fishler
  • Patent number: 11071486
    Abstract: Cardiac activation timing is mapped using a catheter-mounted roving electrode instead of a fixed (e.g., coronary sinus) electrode. The roving electrode is used to measure an initial electrophysiological signal at an initial cardiac location as a reference signal, which is defined as a reference signal. Local activation time(s) for other cardiac location(s), also measured using the catheter-mounted roving electrode, are determined relative to the reference signal. The stability of the reference signal can be monitored, such as by comparing activation rates or cycle lengths between an instantaneously-measured electrophysiological signal and the initial electrophysiological signal. Smaller differences between the two (e.g., less than about 5%) can be compensated for, while larger differences can result in redefining the reference signal.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: July 27, 2021
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Myles Honicker
  • Patent number: 11065464
    Abstract: A wearable system includes a support structure with optionally one or more electrodes in an unbiased state. Different sensor modules may monitor, for the long-term, different patient parameters such as the patient's motion, a physiological parameter, a patient sound etc., other than the patient's ECG. The sensor modules can be worn by the patient concurrently, or only one at a time as convenient, and may provide respective sensor signals. The system may determine from one or more of the available received signals whether a certain threshold has been reached, such as when the patient is having an actionable episode. If so, at least one electrode may become mechanically biased against the patient's body, for making good electrical contact. Then, an ECG reading may be taken and/or therapy may be administered.
    Type: Grant
    Filed: June 9, 2018
    Date of Patent: July 20, 2021
    Assignee: West Affum Holdings Corp.
    Inventor: Gregory T. Kavounas
  • Patent number: 11064953
    Abstract: A fever-causing disease outbreak detection system for an early warning of the outbreak of an infectious disease. The system uses an array of infrared detectors to measure the temperatures of individuals in a population. The measured temperatures are used to create a measured population temperature distribution. A central control unit generates a predicted population temperature distribution using environmental data such as local atmospheric conditions and compares the predicted population temperature distribution to the measured population temperature distribution. If an outbreak is detected, an alert is issued.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: July 20, 2021
    Assignee: Prince Mohammad Bin Fahd University
    Inventors: Faisal Al Anezi, Faramarz Djavanroodi, Nassim Khaled
  • Patent number: 11065459
    Abstract: An implantable medical device (IMD) is configured with a pressure sensor. The IMD includes a housing and a diaphragm that is exposed to the environment outside of the housing. The diaphragm is configured to transmit a pressure from the environment outside of the housing to a piezoelectric membrane. In response, the piezoelectric membrane generates a voltage and/or a current, which is representative of a pressure change applied to the housing diaphragm. In some cases, only changes in pressure over time are used, not absolute or gauge pressures.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: July 20, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, William J. Linder, Moira B. Sweeney, Michael J. Kane, Brendan Early Koop
  • Patent number: 11045653
    Abstract: A method for pacing left bundle branch of the heart comprising implantation of a multi-electrode lead at a desired depth into the interventricular septum from the right ventricle, wherein the depth control during the implantation of the distal electrode is provided by monitoring electrical impedance for one or more intermediate electrodes. Reaching of exceeding a threshold of electrical impedance change is used to determine the entry of a corresponding intermediate electrode from the blood stream in the right ventricle into the cardiac tissue of the septum. Known distances between intermediate spaced apart electrodes and the distal electrode allow determination of the implantation depth of the distal electrode.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: June 29, 2021
    Assignee: Eagle Point Medical LLC
    Inventors: Leonid Makharinsky, Daniel Lev Makharinsky, Andrei Leonidovich Starostin
  • Patent number: 11045175
    Abstract: Surgical devices for use with robotic surgical systems and their methods of use are described. In some embodiments, the surgical device may include an actuator that interfaces with an end effector of an arm of a robotic surgical system. An output from the end effector may actuate the actuator to perform an operation of the surgical device. In some embodiments, the surgical device may include a retainer that retains at least a portion of the surgical device on a distal portion of the arm of the robotic surgical system during actuation. In other embodiments, the surgical device may include a portion that is engaged by a second robotic surgical arm to hold at least a portion of the surgical device stationary relative to the robotic surgical arm engaged with the actuator of the surgical device.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: June 29, 2021
    Assignee: C.R. Bard, Inc.
    Inventors: Donald A. Coelho, Jr., John Conidi, Peter Maughan Crapo, Augustus Felix, Ian K. Parker, Devang Vijay Shah
  • Patent number: 11045144
    Abstract: An auscultatory sound signal acquired by a recording module is coupled through a high-pass filter having a cut-off frequency in the range of 3 to 15 Hz and subsequently filtered with a low-pass filter, and optionally subject to variable-gain amplification under external control—via a USB or wireless interface—of an associated docking system, responsive to the resulting processed auscultatory sound signal. A sound generator in the docking system generates an associated test signal having an integral number of wavelengths for each of a plurality of frequencies. The test signal is applied to a corresponding auscultatory sound-or-vibration sensor to test the integrity thereof. Resulting sound signals recorded by the recording module are analyzed using a Fourier Transform to determine sensor integrity.
    Type: Grant
    Filed: October 21, 2018
    Date of Patent: June 29, 2021
    Assignee: AusculSciences, Inc.
    Inventors: Jun Zhou, Md Shahidul Islam, Jikang Zeng, Daniel Labonté, Simon Martin, Brady Laska, Sergey A. Telenkov
  • Patent number: 11039752
    Abstract: Non-invasive sensor apparatus and method for assessing cardiac performance. A wide variety of different sensor components can capture sensor readings relating to patient attributes. Those sensor readings can then be compared by a processor component to derive a cardiac performance indicator relating to the patient.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: June 22, 2021
    Assignee: Accu-Therm Systems, Inc.
    Inventor: William W. O'Neill
  • Patent number: 11040196
    Abstract: Methods and devices are provided for activating brown adipose tissue (BAT). Generally, the methods and devices can activate BAT to increase thermogenesis, e.g., increase heat production in the patient, which over time can lead to weight loss. In one embodiment, a medical device is provided that activates BAT by electrically stimulating nerves that activate the BAT and/or electrically stimulating brown adipocytes directly, thereby increasing thermogenesis in the BAT and inducing weight loss through energy expenditure.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: June 22, 2021
    Assignees: Cilag GmbH International, The General Hospital Corporation
    Inventors: Jason L. Harris, Nicholas Stylopoulos, Lee M. Kaplan, Tamara C. Baynham, Taylor W. Aronhalt
  • Patent number: 11026606
    Abstract: Methods for data acquisition and processing of magnetic resonance (MR) imaging to obtain the oxygen saturation (O2sat) of blood using a relationship between transverse relaxation time (T2) of blood and oxygen saturation. The method includes obtaining multiple images at various T2 preparation times. Next, non-linear curve fitting may be used to solve for arterial or venous O2sat. The disclosure provides a calibration-free method for accurate quantitative assessment of blood in the heart and deep vessels, even in locations having limited accessibility with other diagnostic techniques.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 8, 2021
    Inventors: Orlando P. Simonetti, Rizwan Ahmad, Lee C. Potter, Juliet Jaison Varghese
  • Patent number: 11020055
    Abstract: A system for monitoring the health and safety of recumbent individuals. In some embodiments, the bed monitor system comprises a wired or wireless sensor mat which may be positioned upon a bed mattress and underneath a bedsheet. Multiple RFID tag sensors embedded within the sensor mat can detect physical, bodily, and environmental attributes and transmit this information to a controller box for further processing. Turn regiment, prohibited body positions, imminent fall danger, and bed occupancy may therefore be tracked and updated accordingly. In some embodiments, the system can dynamically generate positional images of a body proximate to the sensor mat in order to identify adverse conditions requiring attention. Incontinence discharges can also be detected by sensors and algorithms which can differentiate urinary from fecal incontinence events. Various embodiments of the system are portable, allowing for a rapid set-up within hospital venues and within other care facilities.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: June 1, 2021
    Inventor: Edward Li
  • Patent number: 11013916
    Abstract: Implantable medical leads include a shield that is guarded at a termination by having a first portion and a second portion of the shield, where the first portion is between a termination of the shield at the second portion and an inner insulation layer that surrounds the filars. The first portion may reduce the coupling of RF energy from the termination of the shield at the second portion to the filars. The first and second portions may be part of a continuous shield, where the first and second portions are separated by an inversion of the shield. The first and second portions may instead be separate pieces. The first portion may be noninverted and reside between the termination at the second portion and the inner layers, or the first portion may be inverted to create first and second sub-portions. The shield termination at the second portion is between the first and second sub-portions.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 25, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Richard T. Stone, Mark J. Conroy, Wanzhan Liu, Gary W. Salminen
  • Patent number: 11013912
    Abstract: Medical device systems, methods, and algorithms are disclosed for providing complex stimulation waveforms. The waveforms may selectively modulate or activate specific neural targets or selected ratios of specific neural targets. Some of the waveforms include pre-pulse phases defined by parameters, the value of which changes during the pre-pulse phase. Also disclosed herein are graphical user interfaces (GUIs) that allow the selection of waveforms configured to selectively modulate or activate specific neural targets or selected ratios of the neural targets. Adjustable parameters of the waveforms are adjusted automatically based on selection of user-defined parameters.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: May 25, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, G. Karl Steinke, Richard Mustakos