Patents by Inventor Aaron John Zilkie

Aaron John Zilkie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210199995
    Abstract: An optoelectronic device and an array comprising a plurality of the same. The device(s) comprising: an optically active region with an electrode arrangement for applying an electric field across the optically active region; a first curved waveguide, arranged to guide light into the optically active region; and a second curved waveguide, arranged to guide light out of the optically active region; wherein the first curved waveguide and the second curved waveguide are formed of a material having a different band-gap from a band-gap of the optically active region, and wherein the overall guided path formed by the first curved waveguide, the optically active region and the second curved waveguide is U-shaped.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Publication number: 20210191163
    Abstract: An optoelectronic device. The optoelectronic device comprising: a rib waveguide provided on a substrate of the device, the rib waveguide comprising a ridge portion and a slab portion; a heater, disposed within the slab portion; a thermally isolating trench, adjacent to the rib waveguide, and extending into the substrate of the device; and a thermally isolating cavity within the substrate, which is directly connected to the thermally isolating trench, and which extends across at least a part of a width of the rib waveguide between the rib waveguide and the substrate.
    Type: Application
    Filed: May 10, 2019
    Publication date: June 24, 2021
    Inventors: Dong Yoon OH, Hooman ABEDIASL, Yi ZHANG, Aaron John ZILKIE
  • Publication number: 20210181546
    Abstract: An optoelectronic device. The optoelectronic device comprising: a silicon-on-insulator platform, including: a silicon waveguide located within a silicon device layer of the platform, a substrate, and an insulator layer between the substrate and the silicon device layer; and a III-V semiconductor based device, located within a cavity of the silicon-on-insulator platform and including a III-V semiconductor based waveguide, coupled to the silicon waveguide; wherein the III-V semiconductor based device includes a heater and one or more electrical traces, connected to the heater, wherein the one or more electrical traces extend from the III-V semiconductor based device to respective contact pads on the silicon-on-insulator platform.
    Type: Application
    Filed: November 25, 2020
    Publication date: June 17, 2021
    Inventors: Guomin Yu, Aaron John Zilkie, Frank Peters
  • Publication number: 20210181437
    Abstract: A method of transfer printing. The method comprising: providing a precursor photonic device, comprising a substrate and a bonding region, wherein the precursor photonic device includes one or more alignment marks located in or adjacent to the bonding region; providing a transfer die, said transfer die including one or more alignment marks; aligning the one or more alignment marks of the precursor photonic device with the one or more alignment marks of the transfer die; and bonding at least a part of the transfer die to the bonding region.
    Type: Application
    Filed: February 3, 2021
    Publication date: June 17, 2021
    Inventors: Guomin Yu, Mohamad Dernaika, Ludovic Caro, Hua Yang, Aaron John Zilkie
  • Patent number: 11036005
    Abstract: A method of transfer printing. The method comprising: providing a precursor photonic device, comprising a substrate and a bonding region, wherein the precursor photonic device includes one or more alignment marks located in or adjacent to the bonding region; providing a transfer die, said transfer die including one or more alignment marks; aligning the one or more alignment marks of the precursor photonic device with the one or more alignment marks of the transfer die; and bonding at least a part of the transfer die to the bonding region.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: June 15, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Aaron John Zilkie
  • Publication number: 20210167583
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Patent number: 10962718
    Abstract: A reconfigurable spectroscopy system comprises tunable lasers and wavelength lockers to lock to accurate reference wavelengths. Band combiners with differently optimized wavelength ranges multiplex the optical signal over the time domain, to emit a plurality of reference wavelengths for spectroscopy applications. The power requirements are greatly reduced by multiplexing over the time domain in time slots which do not affect sampling and receiving of the spectroscopy data.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: March 30, 2021
    Assignee: ROCKLEY PHOTONICS LIMITED
    Inventors: Hooman Abediasl, Amit Singh Nagra, Andrew George Rickman, Thomas Pierre Schrans, Pradeep Srinivasan, Andrea Trita, Aaron John Zilkie
  • Publication number: 20210083457
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Publication number: 20210080761
    Abstract: An optoelectronic device and an array comprising a plurality of the same. The device(s) comprising: an optically active region with an electrode arrangement for applying an electric field across the optically active region; a first curved waveguide, arranged to guide light into the optically active region; and a second curved waveguide, arranged to guide light out of the optically active region; wherein the first curved waveguide and the second curved waveguide are formed of a material having a different band-gap from a band-gap of the optically active region, and wherein the overall guided path formed by the first curved waveguide, the optically active region and the second curved waveguide is U-shaped.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 18, 2021
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Patent number: 10935724
    Abstract: A polarization rotator and a polarization stabilizer. The polarization rotator includes a rib waveguide. The rib waveguide including: a slab portion; and a ridge portion, which is disposed along a surface of the slab portion. The slab portion has a first slab region whose width, as measured in a direction perpendicular to a guiding direction of the waveguide, increases from a first slab width to a second slab width along a first length, and the ridge portion has a first ridge region whose width, as measured in the same direction as the slab widths, decreases from a first ridge width to a second ridge width along the same first length; such that the rotator is configured to rotate the polarization of light during its transmission through the rib waveguide.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: March 2, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Dong Yoon Oh, Aaron John Zilkie
  • Publication number: 20200412103
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 31, 2020
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Publication number: 20200400902
    Abstract: A silicon interposer. The silicon interposer including: a silicon layer, including one or more optical waveguides each connectable to an optical fiber; an optically active component, configured to convert optical signals received from the optical fiber into electrical signals or to convert electrical signals into optical signals and provide them to the optical fiber; and one or more electrical interconnects, connected to the optically active component and connectable to a printed circuit board, a separate die, a separate substrate, or a wafer level package.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 24, 2020
    Inventors: Vivek Raghunathan, Aaron John Zilkie
  • Publication number: 20200363663
    Abstract: An optoelectronic device and an array comprising a plurality of the same. The device(s) comprising: an optically active region with an electrode arrangement for applying an electric field across the optically active region; a first curved waveguide, arranged to guide light into the optically active region; and a second curved waveguide, arranged to guide light out of the optically active region; wherein the first curved waveguide and the second curved waveguide are formed of a material having a different band-gap from a band-gap of the optically active region, and wherein the overall guided path formed by the first curved waveguide, the optically active region and the second curved waveguide is U-shaped.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Publication number: 20200363662
    Abstract: A silicon based electro-optically active device and method of producing the same. The silicon based electro-optically active device comprising: a silicon-on-insulator (SOI) waveguide; an electro-optically active waveguide including an electro-optically active stack within a cavity of the SOI waveguide; and a lined channel between the electro-optically active stack and the SOI waveguide, the lined channel comprising a liner; wherein the lined channel is filled with a filling material with a refractive index similar to that of a material forming a sidewall of the cavity, to thereby form a bridge-waveguide in the channel between the SOI waveguide and the electro-optically active stack.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 19, 2020
    Inventors: Guomin YU, Yi ZHANG, Aaron John ZILKIE
  • Patent number: 10838240
    Abstract: An optoelectronic device comprising: a silicon-on-insulator (SOI) substrate, the substrate comprising: a silicon support layer; a buried oxide (BOX) layer on top of the silicon support layer; and a silicon device layer on top of the BOX layer; a waveguide region, where a portion of the silicon device layer and a portion of the BOX layer underneath the portion of the device layer have been removed, the portion of the BOX layer having been replaced with a layer of silicon and a layer of crystalline oxide on top of the silicon; and a waveguide structure located directly on top of the crystalline oxide layer, the waveguide structure including a P doped region, and an N doped region with an intrinsic region in-between, creating a PIN junction across which a bias can be applied to create a modulation region.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: November 17, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Aaron John Zilkie
  • Patent number: 10811848
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: October 20, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Patent number: 10802216
    Abstract: A polarization rotator and a polarization stabilizer. The polarization rotator includes a rib waveguide. The rib waveguide including: a slab portion; and a ridge portion, which is disposed along a surface of the slab portion. The slab portion has a first slab region whose width, as measured in a direction perpendicular to a guiding direction of the waveguide, increases from a first slab width to a second slab width along a first length, and the ridge portion has a first ridge region whose width, as measured in the same direction as the slab widths, decreases from a first ridge width to a second ridge width along the same first length; such that the rotator is configured to rotate the polarization of light during its transmission through the rib waveguide.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: October 13, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Dong Yoon Oh, Aaron John Zilkie
  • Publication number: 20200292854
    Abstract: A MOS capacitor-type optical modulator and method of fabricating a MOS capacitor-type optical modulator, wherein the MOS capacitor-type optical modulator has a MOS capacitor region which comprises an insulator formed of an epitaxially grown crystalline rare earth oxide (REO).
    Type: Application
    Filed: August 21, 2018
    Publication date: September 17, 2020
    Inventors: Yi ZHANG, Aaron John ZILKIE
  • Publication number: 20200264377
    Abstract: A reconfigurable spectroscopy system comprises tunable lasers and wavelength lockers to lock to accurate reference wavelengths. Band combiners with differently optimized wavelength ranges multiplex the optical signal over the time domain, to emit a plurality of reference wavelengths for spectroscopy applications. The power requirements are greatly reduced by multiplexing over the time domain in time slots which do not affect sampling and receiving of the spectroscopy data.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: Hooman ABEDIASL, Amit Singh NAGRA, Andrew George RICKMAN, Thomas Pierre SCHRANS, Pradeep SRINIVASAN, Andrea TRITA, Aaron John ZILKIE
  • Patent number: 10677989
    Abstract: A reconfigurable spectroscopy system comprises tunable lasers and wavelength lockers to lock to accurate reference wavelengths. Band combiners with differently optimized wavelength ranges multiplex the optical signal over the time domain, to emit a plurality of reference wavelengths for spectroscopy applications. The power requirements are greatly reduced by multiplexing over the time domain in time slots which do not affect sampling and receiving of the spectroscopy data.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 9, 2020
    Assignee: ROCKLEY PHOTONICS LIMITED
    Inventors: Hooman Abediasl, Andrew George Rickman, Amit Singh Nagra, Andrea Trita, Thomas Pierre Schrans, Aaron John Zilkie, Pradeep Srinivasan