Patents by Inventor Abdellatif Bellaouar

Abdellatif Bellaouar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140328436
    Abstract: A receiver front-end includes a receive path configured to receive an input signal. Additionally, the receiver front-end also includes a low noise amplifier having a common input stage and multiple separate output stages, wherein each separate output stage is configured to be separately activated and connected to a receive signal mixer that provides signal demodulation of the input signal employing one of an aggregation of receiver carriers. A method of operating a receiver front-end and a receiver front-end system are also provided.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 6, 2014
    Applicant: Nvidia Corporation
    Inventors: Abdellatif Bellaouar, Frank Zhang, Essam Atalla
  • Patent number: 8842030
    Abstract: A sigma-delta analog-to-digital converter includes an input transconductance stage that provides an analog input current proportional to an analog input voltage and a current summing stage that generates an analog error signal corresponding to a difference between the analog input current and a feedback current. The sigma-delta analog-to-digital converter also includes a forward signal path that processes the analog error signal to provide a digital output signal corresponding to the analog input voltage. Additionally, the sigma-delta analog-to-digital converter includes a feedback path that includes a current steering digital-to-analog converter having both sourcing and sinking current sources, wherein currents provided by the sourcing and sinking current sources are steerable and connected to directly provide the feedback current based on the digital output signal. A sigma-delta analog-to-digital converter operating method is also provided.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: September 23, 2014
    Assignee: Nvidia Corporation
    Inventors: Paul Fontaine, Abdellatif Bellaouar
  • Patent number: 8836434
    Abstract: A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: September 16, 2014
    Assignee: Icera Inc.
    Inventors: Abdellatif Bellaouar, Ahmed R. Fridi, Sher Jiun Fang, Hamid Safiri
  • Publication number: 20140241462
    Abstract: A method of envelope tracking and an envelope tracking (ET) circuit. One embodiment of the (ET) circuit is for radio frequency (RF) transmission and includes: (1) an amplitude calculator configured to generate an amplitude signal that approximates the amplitude of an input signal, (2) a peak detector configured to take samples of the amplitude signal within a time window and produce an envelope signal that represents an amplitude peak among the samples, and (3) a signal conditioner configured to condition the envelope signal for driving a power supply input stage of a power amplifier operable to amplify and transmit an RF signal based on the input signal.
    Type: Application
    Filed: April 16, 2013
    Publication date: August 28, 2014
    Applicant: Nvidia Corporation
    Inventors: Abdellatif Bellaouar, Arul Balasubramaniyan, Imtinan Elahi
  • Patent number: 8724736
    Abstract: A transmitter architecture having a single signal path or hardware to cover WCDMA/EDGE/GSM applications, and requires no SAW at the transmitter outputs. The transmitter architecture allows for a transmit convergence feature. A passive mixer with unique driver and furthermore using native devices available from the CMOS process for the mixer cores enables low voltage and low power design, low output noise and high linearity. A digital variable gain amplifier has the capability to cover wide output dynamic range operated from low supply voltage and interfaced digitally with the baseband circuit without DAC. A single transformer is used to combine the outputs from the WCDMA/EDGE and GSM drivers and subsequently convert the differential signal paths into a single-ended signal. RF switches are used to divert the output from the transformer to different bands and applications.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: May 13, 2014
    Assignee: Icera, Inc.
    Inventors: Abdellatif Bellaouar, See Taur Lee, Sher Jiun Fang, Sherif H. K. Embabi, Tajinder Manku
  • Patent number: 8669754
    Abstract: A power supply noise rejection circuit for functional circuits, such as a voltage controlled oscillator (VCO). The power supply noise rejection circuit includes an isolation transistor connected to a voltage supply for providing an output current and voltage substantially free of noise across the full frequency range. A current source, a diode connected reference transistor with resistance means connected between its gate and drain terminals, and a dummy circuit serially connected between the voltage supply and ground generate a bias voltage that is applied to the gate of the isolation transistor. The dummy circuit mimics the DC characteristics of the functional circuit such that the output current tracks with process and temperature variations. The isolation transistor and the reference transistor can have negative threshold voltages, and the circuit can include bleed means for drawing current from the gate of the reference transistor and isolation transistor.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: March 11, 2014
    Assignee: Icera Inc.
    Inventors: Abdellatif Bellaouar, Arul Balasubramaniyan, Solti Peng
  • Publication number: 20140051365
    Abstract: A method, device and computer program product is provided for sending a data signal and a clock signal between a radio frequency circuit of a device and a baseband circuit of the device, the radio frequency circuit being configured for at least one of transmission and reception of radio signals in a radio frequency band, where the clock signal has a clock frequency Fc. The method comprises selecting the clock frequency Fc to be a rational multiple of the 0.270833 MHz symbol rate of the Global System for Mobile Communications (GSM) standard and a rational multiple of the 3.84 MHz chipping rate of the Wideband Code Division Multiple Access (WCDMA) interface. The clock frequency Fc is selected such that the clock signal can be generated using a 38.4 MHz or 19.2 MHz reference clock signal, a non-fractional Phase Locked Loop clock multiplier and an output divider, without first having to divide down the reference clock signal.
    Type: Application
    Filed: April 8, 2011
    Publication date: February 20, 2014
    Applicant: NVIDIA TECHNOLOGY UK LIMITED
    Inventors: Abdellatif Bellaouar, Steve Felix, Hamid Safiri
  • Patent number: 8509290
    Abstract: A closed loop power output calibration system for variable power output wireless devices. The wireless device includes a wireless transceiver having a transmit core coupled to a discrete power amplifier. Power detection circuitry formed in the wireless transceiver provides a detected power level of the power amplifier, and a reference power level, both of which are converted to digital signals using existing I and Q signal analog to digital converters in the receiver core. The digital signals are processed to cancel power distortion and temperature effects to provide a resulting power feedback signal. Corrective control signals are generated in response to the power feedback signal relative to a desired power output level. The gain in the transmit core is then adjusted in response to the corrective control signals such that the power amplifier outputs the target output power level.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 13, 2013
    Assignee: Icera Canada ULC
    Inventors: Abdellatif Bellaouar, Tajinder Manku
  • Patent number: 8493136
    Abstract: A driver circuit for supplying a drive signal to a mixer circuit comprising a first and second circuit branch and an operational amplifier. The first circuit branch receives an input signal and a bias signal. The second circuit branch receives the input signal. The operational amplifier has a first input connected to a junction node of the first circuit branch and a second input connected to a junction node of the second circuit branch. The operational amplifier is arranged to provide an operational amplifier output signal a second component of the second circuit branch so that a voltage at the junction node of the second circuit branch is equal to a voltage at the junction node of the first circuit branch. The voltage is dependent on the input signal and providing the drive signal.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 23, 2013
    Assignee: Icera Inc.
    Inventors: Abdellatif Bellaouar, See Taur Lee
  • Patent number: 8472552
    Abstract: A digital linear transmitter for digital to analog conversion of a radio frequency signal. The transmitter includes a delta sigma (??) digital to analog converter (DAC) and a weighted signal digital to analog converter in the transmit path of a wireless device to reduce reliance on relatively large analog components. The ?? DAC converts the lowest significant bits of the oversampled signal while the weighted signal digital to analog converter converts the highest significant bits of the oversampled signal. The transmitter core includes components for providing an oversampled modulated digital signal which is then subjected to first order filtering of the oversampled signal prior to generating a corresponding analog signal. The apparatus and method reduces analog components and increases digital components in transmitter core architecture of wireless RF devices.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 25, 2013
    Assignee: Icera, Inc.
    Inventors: Tajinder Manku, Abdellatif Bellaouar
  • Publication number: 20120268190
    Abstract: An apparatus and method for generating complementary periodic signals for a mixer circuit is provided. The apparatus comprises first and second generation circuits each for generating a periodic signal with a transition time on each rising edge different than a transition time on each falling edge. Each of the first and second generation circuits has an output for supplying its periodic signal to a mixer such that each rising edge of a periodic signal from one of the circuits crosses each falling edge of a periodic signal from the other of the circuits at a crossing point below a turn on voltage of the mixer.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Applicant: Icera Inc.
    Inventors: Abdellatif Bellaouar, See Taur Lee
  • Publication number: 20120256676
    Abstract: A driver circuit for supplying a drive signal to a mixer circuit comprising a first and second circuit branch and an operational amplifier. The first circuit branch receives an input signal and a bias signal. The second circuit branch receives the input signal. The operational amplifier has a first input connected to a junction node of the first circuit branch and a second input connected to a junction node of the second circuit branch. The operational amplifier is arranged to provide an operational amplifier output signal a second component of the second circuit branch so that a voltage at the junction node of the second circuit branch is equal to a voltage at the junction node of the first circuit branch. The voltage is dependent on the input signal and providing the drive signal.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: Icera Inc.
    Inventors: Abdellatif Bellaouar, See Taur Lee
  • Publication number: 20120256613
    Abstract: A power supply noise rejection circuit for functional circuits, such as a voltage controlled oscillator (VCO). The power supply noise rejection circuit includes an isolation transistor connected to a voltage supply for providing an output current and voltage substantially free of noise across the full frequency range. A current source, a diode connected reference transistor with resistance means connected between its gate and drain terminals, and a dummy circuit serially connected between the voltage supply and ground generate a bias voltage that is applied to the gate of the isolation transistor. The dummy circuit mimics the DC characteristics of the functional circuit such that the output current tracks with process and temperature variations. The isolation transistor and the reference transistor can have negative threshold voltages, and the circuit can include bleed means for drawing current from the gate of the reference transistor and isolation transistor.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Applicant: Icera Inc.
    Inventors: Abdellatif Bellaouar, Arul Balasubramaniyan, Solti Peng
  • Patent number: 8270917
    Abstract: An adaptive current control circuit for reduced power consumption and minimized gain shift in a variable gain amplifier. An automatic gain control circuit provides gain control voltages in response to a gain control signal. The gain control voltages are used by the variable gain amplifier to set the gain of the output signal for wireless transmit operations. The adaptive current control circuit receives the same gain control voltages for reducing current to the variable gain amplifier during low gain operation, while providing higher currents during high gain operation. The current that is provided is a hybrid mix of proportional to absolute temperature (PTAT) current and complementary to absolute temperature (CTAT) current for minimizing temperature effects on the gain. The ratio of PTAT current and CTAT current is adjustable for specific temperature ranges to further minimize temperature effects on the gain.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 18, 2012
    Assignee: Icera Canada ULC
    Inventors: Sherif H. K. Embabi, Abdellatif Bellaouar, Michel J. G. J. P. Frechette
  • Publication number: 20110249770
    Abstract: A transmitter architecture having a single signal path or hardware to cover WCDMA/EDGE/GSM applications, and requires no SAW at the transmitter outputs. The transmitter architecture allows for a transmit convergence feature. A passive mixer with unique driver and furthermore using native devices available from the CMOS process for the mixer cores enables low voltage and low power design, low output noise and high linearity. A digital variable gain amplifier has the capability to cover wide output dynamic range operated from low supply voltage and interfaced digitally with the baseband circuit without DAC. A single transformer is used to combine the outputs from the WCDMA/EDGE and GSM drivers and subsequently convert the differential signal paths into a single-ended signal. RF switches are used to divert the output from the transformer to different bands and applications.
    Type: Application
    Filed: September 8, 2009
    Publication date: October 13, 2011
    Applicant: ICERA INC.
    Inventors: Abdellatif Bellaouar, See Taur Lee, Sher Jiun Fang, Sherif H.K. Embabi, Tajinder Manku
  • Publication number: 20110163815
    Abstract: A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
    Type: Application
    Filed: September 8, 2009
    Publication date: July 7, 2011
    Applicant: ICERA INC.
    Inventors: Abdellatif Bellaouar, Ahmed R. Fridi, Sher Jiun Fang, Hamid Safiri
  • Patent number: 7859270
    Abstract: A passive CMOS differential mixer circuit with a mismatch correction circuit for balancing the electrical characteristics of the two output paths. Once the output paths of the differential circuit are balanced, or matched as closely as possible, second order intermodulation product generation can be inhibited or at least reduced to acceptable levels. The mismatch correction circuit receives a digital offset signal, and generates one or more voltage signals to be selectively applied to the signal paths of the passive differential mixer circuit. The voltage signals can be adjusted back gate bias voltages applied to the bulk terminals of selected transistors to adjust their threshold voltages, or the voltage signals can be adjusted common mode voltages applied directly to a selected signal path. Since the differential mixer circuit is passive, no DC current contribution to noise is generated.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 28, 2010
    Assignee: Icera Canada ULC
    Inventors: Sherif H. K. Embabi, Alan R. Holden, Jason P. Jaehnig, Abdellatif Bellaouar
  • Patent number: 7742747
    Abstract: An integrated automatic IIP2 calibration architecture for wireless transceivers is disclosed. The architecture enables a wireless transceiver to generate a test radio frequency (RF) signal having a second order tone with minimal additional circuitry. In particular, the test RF signal is generated using a combination of native transceiver circuits and test adaptor circuits. Native transceiver circuits are those circuits implemented on the transceiver chip for executing native transceiver functions during normal operation, which can be used for generating the test (RF) signal. Test adaptor circuits are added to the transceiver chip, more specifically to the native circuits, for enabling the native circuits to generate the test RF signal in a self-test mode of operation. Circuits for implementing a particular IIP2 minimizing scheme can be included on the transceiver chip for automatic IIP2 calibration during the self-test mode of operation.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: June 22, 2010
    Assignee: Icera Canada ULC
    Inventors: Tajinder Manku, Abdellatif Bellaouar, Alan Holden, Hamid R. Safiri
  • Publication number: 20100093291
    Abstract: An adaptive current control circuit for reduced power consumption and minimized gain shift in a variable gain amplifier. An automatic gain control circuit provides gain control voltages in response to a gain control signal. The gain control voltages are used by the variable gain amplifier to set the gain of the output signal for wireless transmit operations. The adaptive current control circuit receives the same gain control voltages for reducing current to the variable gain amplifier during low gain operation, while providing higher currents during high gain operation. The current that is provided is a hybrid mix of proportional to absolute temperature (PTAT) current and complementary to absolute temperature (CTAT) current for minimizing temperature effects on the gain. The ratio of PTAT current and CTAT current is adjustable for specific temperature ranges to further minimize temperature effects on the gain.
    Type: Application
    Filed: December 20, 2007
    Publication date: April 15, 2010
    Inventors: Sherif H.K. Embabi, Abdellatif Bellaouar, Michel J.G.J.P. Frechette
  • Publication number: 20100027596
    Abstract: A closed loop power output calibration system for variable power output wireless devices. The wireless device includes a wireless transceiver having a transmit core coupled to a discrete power amplifier. Power detection circuitry formed in the wireless transceiver provides a detected power level of the power amplifier, and a reference power level, both of which are converted to digital signals using existing I and Q signal analog to digital converters in the receiver core. The digital signals are processed to cancel power distortion and temperature effects to provide a resulting power feedback signal. Corrective control signals are generated in response to the power feedback signal relative to a desired power output level. The gain in the transmit core is then adjusted in response to the corrective control signals such that the power amplifier outputs the target output power level.
    Type: Application
    Filed: December 21, 2007
    Publication date: February 4, 2010
    Inventors: Abdellatif Bellaouar, Tajinder Manku