Patents by Inventor Abhishek Bandyopadhyay

Abhishek Bandyopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220045693
    Abstract: Systems and methods for improving the efficiency of a rotational dynamic element matching (DEM) for Delta Sigma converters. In some implementations, the systems and methods are provided a for reducing intersymbol interference (ISI) of a Delta Sigma converter. A delta sigma converter architecture can include multiple I-DACs, and the output from each I-DAC can vary from the other I-DACs. Techniques are disclosed for decreasing mismatch among multiple I-DACs while improving efficiency of rotational dynamic element matching.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 10, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Abhishek Bandyopadhyay, Preston S. Birdsong, Adam R. Spirer
  • Publication number: 20220045692
    Abstract: Systems and methods for a power-efficient 3-level digital-to-analog converter. A converter cell using a current starving technique keeps a portion of the converter cell turned on in a low power mode, as opposed to completely turning off current in selected modes. A conversion system keeps a first set of converters active while allowing a second set of converters to be powered down. Systems and methods presented save power and allow for efficient reactivation of converters.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 10, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Preston S. BIRDSONG, Abhishek BANDYOPADHYAY, Adam R. SPIRER
  • Publication number: 20220045694
    Abstract: Systems and methods for improving noise efficiency in a Delta Sigma modulator. A bypass scheme for a noise splitter is disclosed that reduces toggling activity for small signals. In particular, a sample-by-sample bypass noise splitter is disclosed that includes a noise splitting module and a bypass line. The bypass line bypasses the noise splitting module when signals are below a selected threshold, increasing efficiency of the system.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 10, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Abhishek BANDYOPADHYAY, Preston S. BIRDSONG, Adam R. SPIRER
  • Publication number: 20210297087
    Abstract: Herein disclosed are some examples of metastability detectors and compensator circuitry for successive-approximation-register (SAR) analog-to-digital converters (ADCs) within delta sigma modulator (DSM) loops. A metastability detector may detect metastability at an output of a SAR ADC and compensator circuitry may implement a compensation scheme to compensate for the metastability. The identification of the metastability and/or compensation for the metastability can avoid detrimental effects and/or errors to the DSM loops that may be caused by the metastability of the SAR ADCS.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Applicant: Analog Devices, Inc.
    Inventor: Abhishek BANDYOPADHYAY
  • Patent number: 11038515
    Abstract: Disclosed herein are some examples of algorithmic analog-to-digital converters (AADCs) that perform noise shaping. In particular, an AADC disclosed herein includes circuitry that can store residue(s) of one or more conversion cycles produced by the AADC and apply a value corresponding to the residue(s) to a subsequent conversion cycle. The AADC may perform a filtering procedure with the residue(s) to produce the value applied to the subsequent conversion. Applying the value to the subsequent conversion cycle can increase a signal-to-noise ratio of the signal that the AADC is converting in the subsequent conversion cycle.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 15, 2021
    Assignee: ANALOG DEVICES, INC.
    Inventor: Abhishek Bandyopadhyay
  • Publication number: 20210091739
    Abstract: Systems and methods are provided for circuit configurations that maintain audio playback performance while reducing power consumption. In particular, a gain for a current analog-to-digital converter in an audio playback path is adjusted based on an amplitude of the input signal. Additionally, systems and methods are provided for transitioning between a modes of operation for large signals and mode of operation for small signals.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 25, 2021
    Applicant: Analog Devices International Unlimited Company
    Inventors: Atsushi MATAMURA, Abhishek BANDYOPADHYAY
  • Patent number: 10886937
    Abstract: Methods and devices are described for controlling excess loop delay (ELD) gain compensation in a digital-to-analog converter (DAC) of a successive approximation register (SAR) analog-to-digital converter (ADC) by using DAC unit elements in the ELD DAC and DACs for the SAR ADC efficiently. The ELD DAC and DAC partially share DAC units (e.g. capacitors or current sources) to minimize total DAC units used to limit area and power usage while maintaining operational flexibility. Different configurations provide ELD gains of less than or greater than one. A dedicated sampling capacitor is also provided to allow flexible gain control by capacitance ratio.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: January 5, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Abhishek Bandyopadhyay, Akira Shikata, Keith Anthony O'Donoghue
  • Publication number: 20200366306
    Abstract: Disclosed herein are some examples of algorithmic analog-to-digital converters (AADCs) that perform noise shaping. In particular, an AADC disclosed herein includes circuitry that can store residue(s) of one or more conversion cycles produced by the AADC and apply a value corresponding to the residue(s) to a subsequent conversion cycle. The AADC may perform a filtering procedure with the residue(s) to produce the value applied to the subsequent conversion. Applying the value to the subsequent conversion cycle can increase a signal-to-noise ratio of the signal that the AADC is converting in the subsequent conversion cycle.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Applicant: Analog Devices, Inc.
    Inventor: Abhishek BANDYOPADHYAY
  • Patent number: 10340932
    Abstract: Systems and methods are disclosed for a noise-shaping successive approximation register (SAR) analog-to-digital-converter (ADC) using Sampled Analog Technology (SAT) filter techniques for filter construction. A SAR ADC includes an SAR for receiving an analog input signal and outputting a digital decision, a digital-to-analog converter and logic circuitry for converting the digital decision of the SAR to a present analog residue for a present conversion cycle, a filter for processing a previous analog residue from a previous conversion cycle, and for feeding a processed previous analog residue back to the SAR, a summer for summing the processed previous analog residue from the filter and the present analog residue, and generating a summer output, and a comparator for comparing the summer output and a first reference signal and generating a comparator output. The filter includes a capacitor array for filtering the previous analog residue to generate the processed previous analog residue.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: July 2, 2019
    Assignee: ANALOG DEVICES, INC.
    Inventors: Abhishek Bandyopadhyay, Dan Boyko, Eric G. Nestler
  • Patent number: 10284221
    Abstract: A multibit flash quantizer circuit, such as included as a portion of delta-sigma conversion circuit, can be operated in a dynamic or configurable manner. Information indicative of at least one of an ADC input slew rate or a prior quantizer output code can be used to establish a flash quantizer conversion window. Within the selected conversion window, comparators in the quantizer circuit can be made active. Comparators outside the conversion window can be made dormant, such as depowered or biased to save power. An output from such dormant converters can be preloaded and latched. In this manner, full resolution is available without requiring that all comparator circuits within the quantizer remain active at all times.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: May 7, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Abhishek Bandyopadhyay, Daniel Peter Canniff, Mariana Tosheva Markova, Edward Chapin Guthrie
  • Patent number: 10284213
    Abstract: Some or all of a comparator circuit of an analog-to-digital converter (ADC) circuit can be efficiently repurposed or reused for residue amplification for efficient noise-shaping, e.g., in a noise-shaping feedback configuration. A preamplifier portion of a comparator circuit in an oversampling ADC can be re-purposed to provide an amplifier to amplify or otherwise modify a residue left after the bit trials of a conversion cycle. The amplified or modified residue can then be used elsewhere, for example, for noise-shaping by applying a noise transfer function (NTF), a result of which can then be fed back (e.g., summed with the next sampled input at an input of the comparator circuit for use in the N bit trials of the next ADC cycle).
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: May 7, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Abhishek Bandyopadhyay, Rong Jin
  • Publication number: 20180309458
    Abstract: Some or all of a comparator circuit of an analog-to-digital converter (ADC) circuit can be efficiently repurposed or reused for residue amplification for efficient noise-shaping, e.g., in a noise-shaping feedback configuration. A preamplifier portion of a comparator circuit in an oversampling ADC can be re-purposed to provide an amplifier to amplify or otherwise modify a residue left after the bit trials of a conversion cycle. The amplified or modified residue can then be used elsewhere, for example, for noise-shaping by applying a noise transfer function (NTF), a result of which can then be fed back (e.g., summed with the next sampled input at an input of the comparator circuit for use in the N bit trials of the next ADC cycle).
    Type: Application
    Filed: March 5, 2018
    Publication date: October 25, 2018
    Inventors: Abhishek Bandyopadhyay, Rong Jin
  • Publication number: 20180309460
    Abstract: A multibit flash quantizer circuit, such as included as a portion of delta-sigma conversion circuit, can be operated in a dynamic or configurable manner. Information indicative of at least one of an ADC input slew rate or a prior quantizer output code can be used to establish a flash quantizer conversion window. Within the selected conversion window, comparators in the quantizer circuit can be made active. Comparators outside the conversion window can be made dormant, such as depowered or biased to save power. An output from such dormant converters can be preloaded and latched. In this manner, full resolution is available without requiring that all comparator circuits within the quantizer remain active at all times.
    Type: Application
    Filed: March 7, 2018
    Publication date: October 25, 2018
    Inventors: Abhishek Bandyopadhyay, Daniel Peter Canniff, Mariana Tosheva Markova, Edward Chapin Guthrie
  • Publication number: 20170317683
    Abstract: Systems and methods are disclosed for a noise-shaping successive approximation register (SAR) analog-to-digital-converter (ADC) using Sampled Analog Technology (SAT) filter techniques for filter construction. A SAR ADC includes an SAR for receiving an analog input signal and outputting a digital decision, a digital-to-analog converter and logic circuitry for converting the digital decision of the SAR to a present analog residue for a present conversion cycle, a filter for processing a previous analog residue from a previous conversion cycle, and for feeding a processed previous analog residue back to the SAR, a summer for summing the processed previous analog residue from the filter and the present analog residue, and generating a summer output, and a comparator for comparing the summer output and a first reference signal and generating a comparator output. The filter includes a capacitor array for filtering the previous analog residue to generate the processed previous analog residue.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 2, 2017
    Inventors: ABHISHEK BANDYOPADHYAY, Dan BOYKO, Eric G. NESTLER
  • Patent number: 9791493
    Abstract: Fault detection techniques for control of sensor systems. A sensor control integrated circuit (“IC”) may include a fault detection system for coupling to the sensor supply lines. The system may detect faults for each of the sensor supply lines. The fault detection system may level shift sensor supply line signals from a first voltage domain to a second voltage domain appropriate for the fault detection system of the controller IC. The fault detection system may level shift source potential voltages from the first voltage domain to the second voltage domain to detect predetermined fault types. The fault detection system may compare the second domain voltages from the sensor supply lines to voltages representing predetermined fault types and may generate fault status indicators based on the comparison.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: October 17, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Abhishek Bandyopadhyay, Khiem Quang Nguyen
  • Patent number: 9716470
    Abstract: Provided herein are apparatus and methods for compensating an operational amplifier (op-amp). In certain configurations, a compensation network is electrically connected between an output node of the op-amp and an input differential pair coupled source/emitter tail-current node. The compensation network can include a capacitor having a relatively low value of capacitance. In this manner, op-amp bandwidth is improved while power consumption is reduced to meet a “green” standard.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 25, 2017
    Assignee: Analog Devices, Inc.
    Inventor: Abhishek Bandyopadhyay
  • Patent number: 9698805
    Abstract: A system and method can be provided for sampling the residual error in an oversampled SAR ADC, bandpass filtering the sampled residual error, and providing the bandpass filtered signal to an input of a DAC, such as to provide a bandpass filtered output of the SAR ADC. The bandpass filtered output of the SAR ADC can have a reduced electrical noise.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: July 4, 2017
    Assignee: Analog Devices, Inc.
    Inventor: Abhishek Bandyopadhyay
  • Patent number: 9564916
    Abstract: A modified topology for a CTDSM (referred herein as “SCFF”) can effectively deal with signal transfer function (STF) peaking, an inherent property of continuous time feedforward delta sigma converters. The SCFF approach involves providing an additional digital-to-analog (DAC) feedback path to the input of the second integrator (incurring an additional DAC in the circuitry, converting the output of the quantizer into an analog signal and feeding the analog signal to the input of the second integrator). Furthermore, the SCFF approach involves providing two feed-ins: a first feed-in to the input of the second integrator and a second feed-in to the input of the third integrator. The first feed-in can be negative. Advantageously, the modified continuous time delta sigma modulator implementing this approach alleviates some of the peaking issues in the signal transfer function while still enjoy low power consumption.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 7, 2017
    Inventor: Abhishek Bandyopadhyay
  • Publication number: 20160359499
    Abstract: A modified topology for a CTDSM (referred herein as “SCFF”) can effectively deal with signal transfer function (STF) peaking, an inherent property of continuous time feedforward delta sigma converters. The SCFF approach involves providing an additional digital-to-analog (DAC) feedback path to the input of the second integrator (incurring an additional DAC in the circuitry, converting the output of the quantizer into an analog signal and feeding the analog signal to the input of the second integrator). Furthermore, the SCFF approach involves providing two feed-ins: a first feed-in to the input of the second integrator and a second feed-in to the input of the third integrator. The first feed-in can be negative. Advantageously, the modified continuous time delta sigma modulator implementing this approach alleviates some of the peaking issues in the signal transfer function while still enjoy low power consumption.
    Type: Application
    Filed: March 11, 2016
    Publication date: December 8, 2016
    Inventor: ABHISHEK BANDYOPADHYAY
  • Publication number: 20160344344
    Abstract: Provided herein are apparatus and methods for compensating an operational amplifier (op-amp). In certain configurations, a compensation network is electrically connected between an output node of the op-amp and an input differential pair coupled source/emitter tail-current node. The compensation network can include a capacitor having a relatively low value of capacitance. In this manner, op-amp bandwidth is improved while power consumption is reduced to meet a “green” standard.
    Type: Application
    Filed: May 21, 2015
    Publication date: November 24, 2016
    Inventor: Abhishek Bandyopadhyay