Patents by Inventor Abhishek Ghosh

Abhishek Ghosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210173006
    Abstract: A True Single Phase Clock (TSPC) pre-charge based flip-flop is provided. The flip-flop includes a scan section, a master section, and a slave section. The scan section receives a scan enable signal, a scan input signal, a clock signal, and feedback data from the master section, and outputs an internal signal to the master section based on the scan enable signal, the scan input signal, the clock signal, and the feedback data. The master section is coupled to the scan section and receives the internal signal and a data input, and outputs a master feedback signal to the slave section based on the internal signal, the data input, and the feedback data. The slave section is coupled to the master section and generates an output by latching the master feedback signal received from the master section according to the clock signal. The clock signal is a True-Single-Phase-Clock (TSPC).
    Type: Application
    Filed: December 10, 2020
    Publication date: June 10, 2021
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Arani Roy, Arava Prakash, Aroma Bhat, Mitesh Goyal, Abhishek Ghosh
  • Publication number: 20210167781
    Abstract: A CMOS transistor circuit including: a first block generating a first output signal of a NOR state, in response to first and second input signals; a second block including a first AND-OR gate, the second block generating a second output signal of an OR or an AND state, the second block receiving the first and second input signals and the first output signal; a third block generating a third output signal of the NOR state, in response to a third input signal and the second output signal; a fourth block including a second AND-OR gate, the fourth block generating a fourth output signal of the OR or the AND state in response to the third input signal, the second output signal and the third output signal; and a fifth block including an inverter gate, the fifth block generating a fifth output signal in response to the fourth output signal.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 3, 2021
    Inventors: Hareharan Nagarajan, Abhishek Ghosh, Sajal Mittal
  • Publication number: 20200343267
    Abstract: Inventive concepts describe a method for high performance standard cell design techniques in FinFET based library using LLE. Inventive concepts describe a fabrication process using a standard FinFET cell layout having double diffusion breaks (DDBs) and single diffusion breaks (SDBs). According to one example embodiment, the method comprises of removing one or more fingers of a P-type FinFet (PFET) from a standard FinFET cell layout. After removing the one or more fingers, a Half-Double Diffusion Break (Half-DDB) is introduced on a N-type FinFET (NFET) side inside a cell boundary using a cut-poly layer. The cut-poly layer not only isolates the PFET and NFET gates and also becomes an integral part of hybrid structure. Further, the removed one or more fingers of PFET gates are converted to two floating PFET gates by shorting a drain terminal and a source terminal of the PFET gate to a common power net.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Shyam AGARWAL, Abhishek GHOSH, Parvinder Kumar RANA
  • Patent number: 10812055
    Abstract: Embodiments herein disclose a flip flop comprising at least one of a slave circuit and a retention circuit receiving an input from a master circuit. The output circuit receives an input (X1) from at least one of the slave circuit and the retention circuit. A first node and a second node in the retention circuit receive a power supply from a global power supply through transistors, when a retention is 0 in the retention circuit, so that the slave circuit retains a current state of the X1 and X2 irrespective of a clock input in the slave circuit, and the output circuit receives the stored state of the retention circuit, when a local power supply is turned ON.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 20, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sajal Mittal, Aroma Bhat, Hareharan Nagarajan, Rahul Kataria, Abhishek Ghosh
  • Publication number: 20200266185
    Abstract: Example embodiments provide a four input multiplexer integrated circuit (MXT4) associated with an integrated circuit (IC) and a method for reducing area and power of an integrated circuit (IC) using a MXT4, the MXT4 including a complementary signal generator circuit configured to receive first and second selection signals and to generate first and second complementary selection signals based on respective ones of the first and the second selection signals; and a p-type metal oxide semiconductor (PMOS) and an n-type metal oxide semiconductor (NMOS) stack switch circuit configured to transmit at least one input signal to an output based on the first and the second selection signals and the first and the second complementary selection signals.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sajal MITTAL, Abhishek GHOSH, Utkarsh GARG
  • Patent number: 10748932
    Abstract: Inventive concepts describe a method for high performance standard cell design techniques in FinFET based library using LLE. Inventive concepts describe a fabrication process using a standard FinFET cell layout having double diffusion breaks (DDBs) and single diffusion breaks (SDBs). According to one example embodiment, the method comprises of removing one or more fingers of a P-type FinFet (PFET) from a standard FinFET cell layout. After removing the one or more fingers, a Half-Double Diffusion Break (Half-DDB) is introduced on a N-type FinFET (NFET) side inside a cell boundary using a cut-poly layer. The cut-poly layer not only isolates the PFET and NFET gates and also becomes an integral part of hybrid structure. Further, the removed one or more fingers of PFET gates are converted to two floating PFET gates by shorting a drain terminal and a source terminal of the PFET gate to a common power net.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 18, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shyam Agarwal, Abhishek Ghosh, Parvinder Kumar Rana
  • Patent number: 10733599
    Abstract: A system is configured to perform operations that include receiving an input corresponding to a transaction by a user at a merchant location and determining, based on the input, an identifier corresponding to the user. The operations also include authenticating, via an electronic network, the user with a payment provider server of a payment provider and accessing from the payment provider server based on the identifier, digital wallet information corresponding an account of the user that is maintained by the payment provider. The operations further include receiving a selection of a first digital payment instrument of one or more digital payment instruments and transmitting, via a payment network to a payment processor, payment instructions that cause the payment processor to process a payment corresponding to the transaction using first payment information associated with the first digital payment instrument.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 4, 2020
    Assignee: PayPal, Inc.
    Inventors: Abhishek Ghosh, Jan Rosen, Bharat Savani, Abhishikth Nandam, Surojit Bhaduri
  • Patent number: 10727861
    Abstract: An analog-to-digital convertor circuit converts the output of a loop filter circuit to a digital signal. A random sequence generation circuit generates a random sequence. Adder circuitry adds the random sequence to the digital signal to generate a randomized digital signal. Noise transfer function impulse response detection circuitry processes the randomized digital signal and the random sequence to determine a noise transfer function impulse response. Loop filter configuration circuitry configures the loop filter circuit based on the noise transfer function impulse response. The random sequence generation circuit may comprises a high-pass sigma delta modulator. The noise transfer function impulse response detection circuitry may determine the noise transfer function impulse response, and the loop filter configuration circuitry may configure the loop filter based on the noise transfer function impulse response.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: July 28, 2020
    Assignee: MaxLinear, Inc.
    Inventors: Chandrajit Debnath, Abhishek Ghosh, Rishi Mathur, Anand Mohan Pappu
  • Patent number: 10672756
    Abstract: Example embodiments provides a full adder integrated circuit (ADDF) for improving area and power of an integrated circuit (IC). The method includes receiving three input signals and generating three corresponding complementary output signals. Further, the method includes generating an internal signal using two complementary output signals out of the generated three corresponding complementary output signals, and one of the three input signals. Further, the method includes generating an output summation signal using a complementary output signal out of the generated three corresponding complementary output signals, the generated internal signal and a complementary internal signal of the generated internal signal. Further, the method includes generating a carry-out signal using two complementary output signal out of the generated three corresponding complementary output signals, the generated internal signal and the complementary internal signal.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: June 2, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sajal Mittal, Abhishek Ghosh, Utkarsh Garg
  • Patent number: 10651850
    Abstract: A method and a flip-flop for designing low power integrated circuits (IC's). The method includes receiving at least one of a clock signal, a data signal, and a complimentary data signal. The complimentary data signal is produced by an input data inverter present in the flip-flop. Further, the method includes generating at least one master internal signal based on the received at least one of the clock signal, the data signal, and the complimentary data signal, when the clock signal is at a low logic level. Further, the method includes generating at least one slave internal signal based on at least one of the received clock signal and the generated at least one master internal signal, when the clock signal is at a high logic level. Further, the method includes generating an output signal based on the generated at least one slave internal signal.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: May 12, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sajal Mittal, Jaskaran Singh Bhatia, Rajeela Deshpande, Parvinder Kumar Rana, Nikhila C M, Abhishek Ghosh, Rahul Kataria
  • Publication number: 20200144245
    Abstract: Example embodiments provides a full adder integrated circuit (ADDF) for improving area and power of an integrated circuit (IC). The method includes receiving three input signals and generating three corresponding complementary output signals. Further, the method includes generating an internal signal using two complementary output signals out of the generated three corresponding complementary output signals, and one of the three input signals. Further, the method includes generating an output summation signal using a complementary output signal out of the generated three corresponding complementary output signals, the generated internal signal and a complementary internal signal of the generated internal signal. Further, the method includes generating a carry-out signal using two complementary output signal out of the generated three corresponding complementary output signals, the generated internal signal and the complementary internal signal.
    Type: Application
    Filed: January 2, 2019
    Publication date: May 7, 2020
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sajal MITTAL, Abhishek GHOSH, Utkarsh GARG
  • Publication number: 20200136594
    Abstract: Embodiments herein disclose a flip flop comprising at least one of a slave circuit and a retention circuit receiving an input from a master circuit. The output circuit receives an input (X1) from at least one of the slave circuit and the retention circuit. A first node and a second node in the retention circuit receive a power supply from a global power supply through transistors, when a retention is 0 in the retention circuit, so that the slave circuit retains a current state of the X1 and X2 irrespective of a clock input in the slave circuit, and the output circuit receives the stored state of the retention circuit, when a local power supply is turned ON.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 30, 2020
    Inventors: Sajal Mittal, Aroma Bhat, Hareharan Nagarajan, Rahul Kataria, Abhishek Ghosh
  • Patent number: 10615815
    Abstract: An analog-to-digital converter circuit comprises code-shuffling circuitry, a plurality of digital-to-analog converter circuits, a plurality of difference circuits, and a plurality of latch circuits. The code-shuffling circuitry is operable to shuffle a plurality of digital codes among a plurality of its outputs. The plurality of digital-to-analog converter circuits are operable to convert a digital code on the respective one of the outputs to a corresponding one of a plurality of analog reference voltages. The plurality of difference circuits is operable to generate a respective one of a plurality of difference signals corresponding to a difference between an input voltage and a respective one of the plurality of reference voltages. The plurality of latch circuits is operable to latch a respective one of the plurality of difference signals to a corresponding one of a plurality of digital values.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: April 7, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Rishi Mathur, Chandrajit Debnath, Abhishek Ghosh, Anand Mohan Pappu
  • Publication number: 20200067507
    Abstract: A method and a flip-flop for designing low power integrated circuits (IC's). The method includes receiving at least one of a clock signal, a data signal, and a complimentary data signal. The complimentary data signal is produced by an input data inverter present in the flip-flop. Further, the method includes generating at least one master internal signal based on the received at least one of the clock signal, the data signal, and the complimentary data signal, when the clock signal is at a low logic level. Further, the method includes generating at least one slave internal signal based on at least one of the received clock signal and the generated at least one master internal signal, when the clock signal is at a high logic level. Further, the method includes generating an output signal based on the generated at least one slave internal signal.
    Type: Application
    Filed: March 25, 2019
    Publication date: February 27, 2020
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sajal Mittal, Jaskaran Singh Bhatia, Rajeela Deshpande, Parvinder Kumar Rana, Nikhila C M, Abhishek Ghosh, Rahul Kataria
  • Patent number: 10566959
    Abstract: A method and a sense amplifier flip-flop (SAFF) for fixing setup time violations in an integrated circuit (IC) design. The SAFF includes a master latch coupled to a slave latch, wherein the master latch includes a sense amplifier and the SAFF is configured with an equal number of p-type metal oxide semiconductor (PMOS) transistors and n-type metal oxide semiconductor (NMOS) transistors to reduce block area of an integrated circuit (IC). The method includes receiving a clock signal, receiving a data signal, applying the data signal to the sense amplifier when the clock signal is at a low level, wherein a portion of the sense amplifier is responsive to the inverted clock signal, storing a value of the data signal in the slave latch when the clock signal transitions from the low level to the high level, and providing an output signal from the slave latch.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 18, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sajal Mittal, Parvinder Kumar Rana, Abhishek Ghosh, Rajeela Deshpande
  • Publication number: 20200044631
    Abstract: A D flip-flop includes a master block configured to latch an input value of D at one of rising edge and a falling edge of a clock signal, based on the clock signal, the input value of D, and an inverted value of D, and a slave block configured to propagate the input value of D at another one of the falling edge and the rising edge of the clock signal, based on the clock signal.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 6, 2020
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shyam AGARWAL, Sandeep B V, Sheetal Y KOCHREKAR, Abhishek GHOSH, Parvinder Kumar RANA, Rohit BISHT
  • Publication number: 20200021250
    Abstract: Systems and methods are provided for clocking scheme to reduce nonlinear distortion. An example system may include at least two processing paths, each including at least one circuit exhibiting nonlinear behavior. Nonlinearity may be managed during processing of signals, such as by assessing effects of the nonlinear behavior during the processing of signals, and controlling clocking applied via at least one path based on the assessed effects, to reduce the effects of the nonlinear behavior during the processing of signals, eliminating the need for post-processing corrections. The controlling of clocking may include adjusting timing of a clock applied in the at least path, such as by introducing a timing-delay adjustment to a clock when the clock is applied to a circuit after the circuit exhibiting nonlinear behavior. A timing-advancement may be applied to signals processed via the at least one path, particularly before the circuit exhibiting nonlinear behavior.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Prasun Kali Bhattacharyya, Abhishek Ghosh, Prasenjit Bhowmik
  • Publication number: 20190379390
    Abstract: An analog-to-digital convertor circuit converts the output of a loop filter circuit to a digital signal. A random sequence generation circuit generates a random sequence. Adder circuitry adds the random sequence to the digital signal to generate a randomized digital signal. Noise transfer function impulse response detection circuitry processes the randomized digital signal and the random sequence to determine a noise transfer function impulse response. Loop filter configuration circuitry configures the loop filter circuit based on the noise transfer function impulse response. The random sequence generation circuit may comprises a high-pass sigma delta modulator. The noise transfer function impulse response detection circuitry may determine the noise transfer function impulse response, and the loop filter configuration circuitry may configure the loop filter based on the noise transfer function impulse response.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Inventors: Chandrajit Debnath, Abhishek Ghosh, Rishi Mathur, Anand Mohan Pappu
  • Publication number: 20190341926
    Abstract: An analog-to-digital converter circuit comprises code-shuffling circuitry, a plurality of digital-to-analog converter circuits, a plurality of difference circuits, and a plurality of latch circuits. The code-shuffling circuitry is operable to shuffle a plurality of digital codes among a plurality of its outputs. The plurality of digital-to-analog converter circuits are operable to convert a digital code on the respective one of the outputs to a corresponding one of a plurality of analog reference voltages. The plurality of difference circuits is operable to generate a respective one of a plurality of difference signals corresponding to a difference between an input voltage and a respective one of the plurality of reference voltages. The plurality of latch circuits is operable to latch a respective one of the plurality of difference signals to a corresponding one of a plurality of digital values.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Rishi Mathur, Chandrajit Debnath, Abhishek Ghosh, Anand Mohan Pappu
  • Patent number: 10187017
    Abstract: Systems and methods are provided for clocking scheme to reduce nonlinear distortion. An example system may comprise at least two processing paths, each comprising at least one circuit exhibiting nonlinear behavior. Nonlinearity may be managed during processing of signals, such as by assessing effects of the nonlinear behavior during the processing of signals, and controlling clocking applied via at least one path based on the assessed effects, to reduce the effects of the nonlinear behavior during the processing of signals, eliminating the need for post-processing corrections. The controlling of clocking may comprise adjusting timing of a clock applied in the at least path, such as by introducing a timing-delay adjustment to a clock when the clock is applied to a circuit after the circuit exhibiting nonlinear behavior. A timing-advancement may be applied to signals processed via the at least one path, particularly before the circuit exhibiting nonlinear behavior.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: January 22, 2019
    Assignee: MAXLINEAR, INC.
    Inventors: Prasun Kali Bhattacharyya, Abhishek Ghosh, Prasenjit Bhowmik