Patents by Inventor Akihiko Ishibashi

Akihiko Ishibashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9899213
    Abstract: On an RAMO4 substrate containing a single crystal represented by the general formula RAMO4 (wherein R represents one or a plurality of trivalent elements selected from a group of elements including: Sc, In, Y, and a lanthanoid element, A represents one or a plurality of trivalent elements selected from a group of elements including: Fe(III), Ga, and Al, and M represents one or a plurality of divalent elements selected from a group of elements including: Mg, Mn, Fe(II), Co, Cu, Zn, and Cd), a buffer layer containing a nitride of In and a Group III element except for In is formed, and a Group III nitride crystal is formed on the buffer layer.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 20, 2018
    Assignee: PANASONIC CORPORATION
    Inventors: Akio Ueta, Akihiko Ishibashi
  • Publication number: 20170338101
    Abstract: On an RAMO4 substrate containing a single crystal represented by the general formula RAMO4 (wherein R represents one or a plurality of trivalent elements selected from a group of elements including: Sc, In, Y, and a lanthanoid element, A represents one or a plurality of trivalent elements selected from a group of elements including: Fe(III), Ga, and Al, and M represents one or a plurality of divalent elements selected from a group of elements including: Mg, Mn, Fe(II), Co, Cu, Zn, and Cd), a buffer layer containing a nitride of In and a Group III element except for In is formed, and a Group III nitride crystal is formed on the buffer layer.
    Type: Application
    Filed: February 9, 2017
    Publication date: November 23, 2017
    Inventors: Akio UETA, Akihiko ISHIBASHI
  • Publication number: 20170279003
    Abstract: A Group III nitride semiconductor containing: a RAMO4 substrate containing a single crystal represented by the general formula RAMO4 (wherein R represents one or a plurality of trivalent elements selected from the group consisting of Sc, In, Y, and a lanthanoid element, A represents one or a plurality of trivalent elements selected from the group consisting of Fe (III), Ga, and Al, and M represents one or a plurality of divalent elements selected from the group consisting of Mg, Mn, Fe(II), Co, Cu, Zn, and Cd), and a Group III nitride crystal disposed above the RAMO4 substrate, having therebetween a dissimilar film that contains a material different from the RAMO4 substrate, and has plural openings.
    Type: Application
    Filed: February 13, 2017
    Publication date: September 28, 2017
    Inventors: AKIHIKO ISHIBASHI, AKIO UETA
  • Publication number: 20170239773
    Abstract: A RAMO4 substrate includes a single crystal represented by a formula of RAMO4 (in the formula, R indicates one or a plurality of trivalent elements selected from a group consisting of Sc, In, Y, and a lanthanoid element, A indicates one or a plurality of trivalent elements selected from a group consisting of Fe(III), Ga, and Al, and M indicates one or a plurality of bivalent elements selected from a group consisting of Mg, Mn, Fe(II), Co, Cu, Zn, and Cd). An epitaxially-grown surface is provided on one surface of the RAMO4 substrate, a satin-finish surface is provided on another surface. The satin-finish surface has surface roughness which is larger than that of the epitaxially-grown surface.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 24, 2017
    Inventors: YOSHIFUMI TAKASU, YOSHIO OKAYAMA, AKIHIKO ISHIBASHI, ISAO TASHIRO, AKIO UETA, MASAKI NOBUOKA, NAOYA RYOKI
  • Publication number: 20170239779
    Abstract: A RAMO4 substrate is formed from single crystal represented by a formula of RAMO4 (in the formula, R indicates one or a plurality of trivalent elements selected from a group consisting of Sc, In, Y, and a lanthanoid element, A indicates one or a plurality of trivalent elements selected from a group consisting of Fe(III), Ga, and Al, and M indicates one or a plurality of bivalent elements selected form a group consisting of Hg, Mn, Fe(II), Co, Cu, Zn, and Cd). An epitaxially-grown surface is provided on at least one surface of the RAMO4 substrate. The epitaxially-grown surface includes a plurality of cleavage surfaces which are regularly distributed, and are separated from each other.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 24, 2017
    Inventors: Yoshifumi TAKASU, Yoshio OKAYAMA, Akihiko ISHIBASHI, Isao TASHIRO, Akio UETA, Masaki NOBUOKA, Naoya RYOKI
  • Publication number: 20170239772
    Abstract: A RAMO4 substrate includes a single crystal represented by a formula of RAMO4 (in the formula, R indicates one or a plurality of trivalent elements selected from a group consisting of Sc, In, Y, and a lanthanoid element, A indicates one or a plurality of trivalent elements selected from a group consisting of Fe(III), Ga, and Al, and M indicates one or a plurality of bivalent elements selected from a group consisting of Mg, Mn, Fe(II), Co, Cu, Zn, and Cd). An epitaxially-grown surface is provided on at least one surface of the RAMO4 substrate. An unevenness having a height of 500 nm or more is not provided on the epitaxially-grown surface.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 24, 2017
    Inventors: YOSHIFUMI TAKASU, YOSHIO OKAYAMA, AKIHIKO ISHIBASHI, ISAO TASHIRO, AKIO UETA, MASAKI NOBUOKA, NAOYA RYOKI
  • Patent number: 9671182
    Abstract: The present invention provides a copper alloy tube for heat exchangers which is tolerable to a high operating pressure of new cooling media such as carbon dioxide and HFC-based fluorocarbons, and is excellent in fracture strength, even if the tube is thinned, and a copper alloy tube for a heat exchanger which has a composition having specified amounts of Sn and P, has an average crystal grain size of 30 ?m or less and has a high strength of 250 MPa or more of a tensile strength in the longitudinal direction of the tube improves the fracture strength as a texture in which the orientation distribution density in the Goss orientation is 4% or less.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: June 6, 2017
    Assignees: KOBELCO & MATERIALS COPPER TUBE, LTD., Kobe Steel, Ltd.
    Inventors: Toshiaki Takagi, Yasuhiro Aruga, Mamoru Nagao, Takashi Shirai, Masato Watanabe, Akihiko Ishibashi
  • Patent number: 8981340
    Abstract: A nitride semiconductor device according to the present invention includes a p-type nitride semiconductor layer, an n-type nitride semiconductor layer, and an active layer interposed between the p-type nitride semiconductor layer and the n-type nitride semiconductor layer. The p-type nitride semiconductor layer includes: a first p-type nitride semiconductor layer containing Al and Mg; and a second p-type nitride semiconductor layer containing Mg. The first p-type nitride semiconductor layer is located between the active layer and the second p-type nitride semiconductor layer, and the second p-type nitride semiconductor layer has a greater band gap than a band gap of the first p-type nitride semiconductor layer.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 17, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yasutoshi Kawaguchi, Toshitaka Shimamoto, Akihiko Ishibashi, Isao Kidoguchi, Toshiya Yokogawa
  • Patent number: 8222670
    Abstract: A semiconductor light-emitting device according to the present invention includes: a GaN substrate 1 containing an n-type impurity and being made of silicon carbide or a nitride semiconductor; a multilayer structure 10 provided on a main surface of the GaN substrate 1; a p-electrode 17 formed on the multilayer structure 10; a first n-electrode 18 substantially covering the entire rear surface of the GaN substrate 1; and a second n-electrode 20 provided on the first n-electrode 18 so as to expose at least a portion of the periphery of the first n-electrode 18.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Naomi Anzue, Gaku Sugahara, Yoshiaki Hasegawa, Akihiko Ishibashi, Toshiya Yokogawa
  • Patent number: 8198637
    Abstract: A semiconductor laser includes a nitride semiconductor substrate with a striped raised portion that extends in a resonant cavity length direction, a masking layer, which has been defined on the principal surface of the nitride semiconductor substrate and which has a striped opening in a selected area on the upper surface of the striped raised portion, and a nitride semiconductor multilayer structure, which has been grown on the selected area on the upper surface of the striped raised portion. The nitride semiconductor multilayer structure is thicker than nitride semiconductors on the masking layer, and the nitride semiconductor multilayer structure is broader in width than the striped opening of the masking layer and includes portions that have grown laterally onto the masking layer.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: June 12, 2012
    Assignee: Panasonic Corporation
    Inventors: Gaku Sugahara, Yasutoshi Kawaguchi, Akihiko Ishibashi, Isao Kidoguchi, Toshiya Yokogawa
  • Publication number: 20110272670
    Abstract: A nitride semiconductor device according to the present invention includes a p-type nitride semiconductor layer, an n-type nitride semiconductor layer, and an active layer interposed between the p-type nitride semiconductor layer and the n-type nitride semiconductor layer. The p-type nitride semiconductor layer includes: a first p-type nitride semiconductor layer containing Al and Mg; and a second p-type nitride semiconductor layer containing Mg. The first p-type nitride semiconductor layer is located between the active layer and the second p-type nitride semiconductor layer, and the second p-type nitride semiconductor layer has a greater band gap than a band gap of the first p-type nitride semiconductor layer.
    Type: Application
    Filed: June 16, 2011
    Publication date: November 10, 2011
    Inventors: Yasutoshi KAWAGUCHI, Toshitaka SHIMAMOTO, Akihiko ISHIBASHI, Isao KIDOGUCHI, Toshiya YOKOGAWA
  • Patent number: 8044430
    Abstract: A nitride semiconductor light-emitting device according to the present invention includes a nitride based semiconductor substrate 10 and a nitride based semiconductor multilayer structure that has been formed on the semiconductor substrate 10. The multilayer structure includes an active layer 16 that produces emission and multiple semiconductor layers 12, 14 and 15 that have been stacked one upon the other between the active layer 16 and the substrate 10 and that include an n-type dopant. Each and every one of the semiconductor layers 12, 14 and 15 includes Al atoms.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: October 25, 2011
    Assignee: Panasonic Corporation
    Inventors: Akihiko Ishibashi, Toshiya Yokogawa
  • Patent number: 8030677
    Abstract: A semiconductor light-emitting device according to the present invention includes: a GaN substrate 1 containing an n-type impurity and being made of silicon carbide or a nitride semiconductor; a multilayer structure 10 provided on a main surface of the GaN substrate 1; a p-electrode 17 formed on the multilayer structure 10; a first n-electrode 18 substantially covering the entire rear surface of the GaN substrate 1; and a second n-electrode 20 provided on the first n-electrode 18 so as to expose at least a portion of the periphery of the first n-electrode 18.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 4, 2011
    Assignee: Panasonic Corporation
    Inventors: Naomi Anzue, Gaku Sugahara, Yoshiaki Hasegawa, Akihiko Ishibashi, Toshiya Yokogawa
  • Patent number: 8018134
    Abstract: A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Isao Kidoguchi, Yasuo Kitaoka, Hiroyoshi Yajima, Keiji Ito, Akihiko Ishibashi, Yoshiaki Hasegawa, Kiminori Mizuuchi
  • Publication number: 20110215340
    Abstract: A semiconductor light-emitting device according to the present invention includes: a GaN substrate 1 containing an n-type impurity and being made of silicon carbide or a nitride semiconductor; a multilayer structure 10 provided on a main surface of the GaN substrate 1; a p-electrode 17 formed on the multilayer structure 10; a first n-electrode 18 substantially covering the entire rear surface of the GaN substrate 1; and a second n-electrode 20 provided on the first n-electrode 18 so as to expose at least a portion of the periphery of the first n-electrode 18.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Inventors: Naomi Anzue, Gaku Sugahara, Yoshiaki Hasegawa, Akihiko Ishibashi, Toshiya Yokogawa
  • Publication number: 20110182310
    Abstract: A nitride semiconductor laser diode includes a substrate of n-type GaN, and a multilayer structure including an n-type cladding layer of AlxGa1-xN (where 0<x<1) formed on and in contact with a main surface of the substrate, an MQW active layer formed on the n-type cladding layer, and a p-type cladding layer formed on the MQW active layer. The main surface of the substrate is oriented at an angle ranging from 0.25° to 0.7° with respect to a (0001) plane of a plane orientation. The composition x of the AlxGa1-xN is in a range from 0.025 to 0.04.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Tomohito Yabushita, Yasutoshi Kawaguchi, Akio Ueta, Akihiko Ishibashi
  • Patent number: 7852891
    Abstract: A nitride semiconductor light-emitting device is provided including: a substrate made of a nitride semiconductor; a semiconductor layer made of a nitride semiconductor containing a p-type impurity, the semiconductor layer being formed as contacting an upper surface of the substrate; a first cladding layer made of a nitride semiconductor containing an impurity of a first conductivity type, the first cladding layer being formed on the semiconductor layer; an active layer formed on the first cladding layer; and a second cladding layer made of a nitride semiconductor containing an impurity of a second conductivity type, the second cladding layer being formed on the active layer.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Yoshiaki Hasegawa, Toshiya Yokogawa, Akihiko Ishibashi
  • Patent number: 7846820
    Abstract: A process for producing a nitride semiconductor according to the present invention includes: step (A) of provided an n-GaN substrate 101; step (B) of forming on the substrate 101 a plurality of stripe ridges having upper faces which are parallel to a principal face of the substrate 101; step (C) of selectively growing AlxGayInzN crystals (0?x, y, z?1: x+y+z=1) 104 on the upper faces of the plurality of stripe ridges, the AlxGayInzN crystals containing an n-type impurity at a first concentration; and step (D) of growing an Alx?Gay?Inz?N crystal (0?x?, y?, z??1:x?+y?+z?=1) 106 on the AlxGayInzN crystals 104, the Alx?Gay?Inz?N crystal 106 containing an n-type impurity at a second concentration which is lower than the first concentration, and linking every two adjoining AlxGayInzN crystals 104 with the Alx?Gay?Inz?N crystal 106 to form one nitride semiconductor layer 120.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: December 7, 2010
    Assignee: Panasonic Corporation
    Inventors: Akihiko Ishibashi, Toshiya Yokogawa, Toshitaka Shimamoto, Yoshiaki Hasegawa, Yasutoshi Kawaguchi, Isao Kidoguchi
  • Patent number: 7816696
    Abstract: An nitride semiconductor device according to the present invention is a nitride semiconductor device including: an n-GaN substrate 10; a semiconductor multilayer structure 100 formed on a principal face of the n-GaN substrate 10, the semiconductor multilayer structure 100 including a p-type region and an n-type region; a p-side electrode 32 which is in contact with a portion of the p-type region included in the semiconductor multilayer structure 100; and an n-side electrode 34 provided on the rear face of the n-GaN substrate 10. The rear face of the n-GaN substrate includes a nitrogen surface, such that a carbon concentration at an interface between the rear face and the n-side electrode 34 is adjusted to 5 atom % or less.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: October 19, 2010
    Assignee: Panasonic Corporation
    Inventors: Yoshiaki Hasegawa, Gaku Sugahara, Naomi Anzue, Akihiko Ishibashi, Toshiya Yokogawa
  • Publication number: 20100259184
    Abstract: A light-emitting device according to the present invention includes a plurality of columnar semiconductors 30 arranged on a GaN substrate 7, and a plurality of protrusions 13 formed on a side face of each columnar semiconductor 30. Each columnar semiconductor 30 has a light-emitting portion composed of a nitride compound semiconductor, and is supported by the GaN substrate 7 at a lower end. The columnar semiconductor 30 has a multilayer structure including an n-cladding layer 9, an active layer 10, and a p-cladding layer 11, the active layer 10 having a multi-quantum well structure in which InWGa1-WN (0<W<1) well layers and GaN barrier layers are alternately deposited.
    Type: Application
    Filed: February 15, 2007
    Publication date: October 14, 2010
    Inventors: Ryou Kato, Yasutoshi Kawaguchi, Akihiko Ishibashi, Toshiya Yokogawa