Patents by Inventor Akihiro Itou

Akihiro Itou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180012802
    Abstract: A semiconductor chip manufacturing method includes preparing a semiconductor wafer including a front surface on which a bump is exposed, a rear surface located at a side opposite to the front surface, a plurality of element regions in each of which the bump is formed, and a dividing region defining each of the element regions, forming a mask which covers the bump and has an opening exposing the dividing region on the surface of the semiconductor wafer by spraying liquid which contains raw material of the mask along the bump by a spray coating method, and singulating the semiconductor wafer by exposing the surface of the semiconductor wafer to first plasma and etching the dividing region, which is exposed to the opening, until the rear surface is reached in a state where the bump is covered by the mask.
    Type: Application
    Filed: June 14, 2017
    Publication date: January 11, 2018
    Inventors: SHOGO OKITA, MITSURU HIROSHIMA, ATSUSHI HARIKAI, NORIYUKI MATSUBARA, AKIHIRO ITOU
  • Publication number: 20170345715
    Abstract: An element chip manufacturing method includes a preparation process of preparing a substrate which includes a first surface provided with a bump and a second surface and includes a plurality of element regions defined by dividing regions, a bump embedding process of adhering a protection tape having an adhesive layer to the first surface and embedding. The element chip manufacturing method includes a thinning process of grinding the second surface in a state where the protection tape is adhered to the first surface and thinning the substrate, after the bump embedding process, a mask forming process of forming a mask in the second surface and exposes the dividing regions, after the thinning process, a holding process of arranging the first surface to oppose a holding tape supported on a frame and holding the substrate on the holding tape.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 30, 2017
    Inventors: ATSUSHI HARIKAI, SHOGO OKITA, AKIHIRO ITOU, KATSUMI TAKANO, MITSURU HIROSHIMA
  • Publication number: 20170345781
    Abstract: An element chip manufacturing method includes a preparation process of preparing a substrate which includes a first surface having an exposed bump and a second surface opposite to the first surface and includes a plurality of element regions defined by dividing regions, a bump embedding process of embedding at least a head top part of the bump into the adhesive layer, a mask forming process of forming a mask in the second surface. The method for manufacturing the element chip includes a holding process of arranging the first surface to oppose a holding tape supported on a frame and holding the substrate on the holding tape, a placement process of placing the substrate on a stage provided inside of a plasma processing apparatus through the holding tape, after the mask forming process and the holding process.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 30, 2017
    Inventors: ATSUSHI HARIKAI, SHOGO OKITA, AKIHIRO ITOU, KATSUMI TAKANO, MITSURU HIROSHIMA
  • Publication number: 20170271194
    Abstract: A plasma processing method includes a mounting process of mounting a holding sheet holding a substrate in a stage provided in a plasma processing apparatus, and a fixing process of fixing the holding sheet to the stage. The plasma processing method further includes a determining process of determining whether or not a contact state of the holding sheet with the stage is good or bad after the fixing process, and a plasma etching process of etching the substrate by exposing a surface of the substrate to plasma on the stage, in a case in which the contact state is determined to be good in the determining process.
    Type: Application
    Filed: February 8, 2017
    Publication date: September 21, 2017
    Inventors: SHOGO OKITA, ATSUSHI HARIKAI, AKIHIRO ITOU
  • Publication number: 20170263502
    Abstract: The method for manufacturing an element chip includes a mounting step and a plasma dicing step. In the mounting step, a semiconductor substrate with flexibility, which has a first main surface and a second main surface located at an opposite side of the first main surface, which has a plurality element regions and a dividing region for defining the element regions, and on which a mask for covering the first main surface in the element region and for exposing the first main surface in the dividing region is formed, is mounted on a stage. In the plasma dicing step, the semiconductor substrate is diced into a plurality of element chips including the element; region by exposing the first main surface side of the semiconductor substrate to plasma on the stage and etching from the first main surface side to the second main surface while forming a groove on the dividing region.
    Type: Application
    Filed: February 9, 2017
    Publication date: September 14, 2017
    Inventors: SHOGO OKITA, ATSUSHI HARIKAI, AKIHIRO ITOU, NORIYUKI MATSUBARA, BUNZI MIZUNO
  • Publication number: 20170263461
    Abstract: A plasma processing method includes an attaching process of attaching a resin film to a first main surface of a substrate which is provided with the first main surface and a second main surface on an opposite side of the first main surface and a patterning process of forming a mask, which includes an opening exposing a region to be processed of the substrate, by patterning the resin film. The plasma processing method includes a first plasma process of generating first plasma of first gas in a depressurized atmosphere including the first gas, exposing the mask to the first plasma, and reducing a void between the mask and the first main surface. The plasma processing method includes a second plasma process of generating second plasma from second gas in atmosphere including the second gas, exposing the region to be processed exposed from the opening to the second plasma, and etching the region to be processed.
    Type: Application
    Filed: February 8, 2017
    Publication date: September 14, 2017
    Inventors: NORIYUKI MATSUBARA, ATSUSHI HARIKAI, AKIHIRO ITOU
  • Patent number: 9505915
    Abstract: A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: November 29, 2016
    Assignees: Kyoto Municipal Institute of Industrial Technology and Culture, YKK Corporation
    Inventors: Takeshi Senba, Kazuo Kitagawa, Akihiro Itou, Kazuya Mizumoto
  • Patent number: 9469750
    Abstract: A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 18, 2016
    Assignees: Kyoto Municipal Institute of Industrial Technology and Culture, YKK Corporation
    Inventors: Takeshi Senba, Kazuo Kitagawa, Akihiro Itou, Kazuya Mizumoto
  • Patent number: 9458544
    Abstract: An exemplary organic hydride conversion device for generating a hydrogen gas through organic hydride conversion according to the present disclosure comprises an anode containing a dehydrogenation catalyst, a cathode containing hydrogenation catalyst, and a proton conductor disposed between the anode and the cathode. The proton conductor has a perovskite crystal structure expressed by the compositional formula AaB1-xB?xO3-x. The A element is an alkaline-earth metal and is contained in a range of 0.4<a<0.9, where the a value represents a mole fraction of this element, and the B? element is a trivalent group 3 or group 13 element and is contained in a range of 0.2<x<0.6, where the x value represents a mole fraction of this element.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 4, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuji Zenitani, Takashi Nishihara, Tetsuya Asano, Akihiro Itou, Saifullah Badar
  • Publication number: 20150225859
    Abstract: An exemplary dehydrogenation device for generating a hydrogen gas through dehydrogenation according to the present disclosure comprises an anode containing a dehydrogenation catalyst, a cathode containing catalyst capable of reducing protons, and a proton conductor disposed between the anode and the cathode. The proton conductor has a perovskite crystal structure expressed by the compositional formula AaB1-xB?xO3-?. The A element is an alkaline-earth metal and is contained in a range of 0.4<a<0.9, where the a value represents a mole fraction of this element, and the B? element is a trivalent group 3 or group 13 element and is contained in a range of 0.2<x<0.6, where the x value represents a mole fraction of this element.
    Type: Application
    Filed: January 27, 2015
    Publication date: August 13, 2015
    Inventors: YUJI ZENITANI, TAKASHI NISHIHARA, TETSUYA ASANO, AKIHIRO ITOU, HIROKI TAKEUCHI
  • Publication number: 20150225862
    Abstract: An exemplary organic hydride conversion device for generating a hydrogen gas through organic hydride conversion according to the present disclosure comprises an anode containing a dehydrogenation catalyst, a cathode containing hydrogenation catalyst, and a proton conductor disposed between the anode and the cathode. The proton conductor has a perovskite crystal structure expressed by the compositional formula AaB1-xB?xO3-x. The A element is an alkaline-earth metal and is contained in a range of 0.4<a<0.9, where the a value represents a mole fraction of this element, and the B? element is a trivalent group 3 or group 13 element and is contained in a range of 0.2<x<0.6, where the x value represents a mole fraction of this element.
    Type: Application
    Filed: January 26, 2015
    Publication date: August 13, 2015
    Inventors: YUJI ZENITANI, TAKASHI NISHIHARA, TETSUYA ASANO, AKIHIRO ITOU, SAIFULLAH BADAR
  • Publication number: 20150148460
    Abstract: A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 28, 2015
    Inventors: Takeshi Senba, Kazuo Kitagawa, Akihiro Itou, Kazuya Mizumoto
  • Patent number: 8790563
    Abstract: A method is presented for stably, highly, and efficiently producing a three-dimensional molded article of a fiber-reinforced composite material having a three-dimensional shape, uniform quality, and free from wrinkles by press molding a plurality of prepregs cut out in a predetermined shape and also to a molded article.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: July 29, 2014
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Tsuneo Takano, Kiharu Numata, Akihiro Itou, Masato Taguchi, Junnichi Muramatsu
  • Patent number: 7491774
    Abstract: A production method of granular epoxy resin includes an epoxy resin preparing step of preparing an epoxy resin which is solid at ordinary temperature by reaction between a phenol compound and epihalohydrin; a purifying processing step of refining the prepared epoxy resin which is solid at ordinary temperature so that the total content of compounds having a molecular weight of 200 or less is 0.28% by mass or less of the entire epoxy resin; and a pulverizing step of pulverizing the refined epoxy resin obtained by the purifying processing step under conditions so as not to make the total content of compounds having a molecular weight of 200 or less exceeding 0.3% by mass, wherein the epoxy resin which is solid at ordinary temperature prepared by the epoxy resin preparing step is mainly composed of at least one selected from oligomers represented by the following general formula (1) and oligomers represented by the following general formula (2).
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: February 17, 2009
    Assignee: Japan Epoxy Resins Co., Ltd.
    Inventors: Yasuyuki Murata, Atsuhito Hayakawa, Akihiro Itou
  • Patent number: 7307128
    Abstract: The present invention relates to an epoxy compound, represented by a general formula (I), which is solid at ordinary temperature, has extremely low melt viscosity and has excellent curing property and which can provide a cured product which is excellent in mechanical strength, heat resistance, and moisture resistance. It also relates to a preparation method of the epoxy compound, an epoxy resin composition, and a cured product thereof. The epoxy compound is represented by the following general formula (I): (wherein R1-R10 each represent hydrogen atom or alkyl group having 1-6 carbon atoms, and n represents an integer of 0 or more).
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 11, 2007
    Assignee: Japan Epoxy Resins Co., Ltd.
    Inventors: Atsuhito Hayakawa, Akihiro Itou
  • Patent number: 7304120
    Abstract: An epoxy compound, represented by a general formula (I) is obtained by reacting an anthrahydroquinone compound having a following general formula (II) with epihalohydrin. (wherein R1-R10 each represent hydrogen atom or alkyl group having 1-6 carbon atoms, and n represents an integer of 0 or more, and wherein A1, A2 each represent hydrogen atom or alkali metal atom, R1-R10 each represent hydrogen atom or alkyl group having 1-6 carbon atoms.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 4, 2007
    Assignee: Japan Epoxy Resins Co., Ltd.
    Inventors: Atsuhito Hayakawa, Akihiro Itou
  • Patent number: 7285602
    Abstract: A granular epoxy resin is made by pulverizing an epoxy resin which is solid at ordinary temperature and can exhibit excellent fluidity during molding because of its low melt viscosity in which the total content of components having a molecular weight of 500 or less among components of n1=0 in the following general formula (1) and/or components of n2=0 in the following general formula (2) is 50% by mass or more of the entire epoxy resin, or, the total content of components having a molecular weight 400 or less among components of n1=0 in the following general formula (1) and/or components of n2=0 in the following general formula (2) is 20% by mass or more of the entire epoxy resin. The content of low molecular weight compounds having a molecular weight 200 or less in the granular epoxy resin is 0.3% by mass or less.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: October 23, 2007
    Assignee: Japan Epoxy Resins Co., Ltd.
    Inventors: Yasuyuki Murata, Atsuhito Hayakawa, Akihiro Itou
  • Publication number: 20070135616
    Abstract: A production method of granular epoxy resin includes an epoxy resin preparing step of preparing an epoxy resin which is solid at ordinary temperature by reaction between a phenol compound and epihalohydrin; a purifying processing step of refining the prepared epoxy resin which is solid at ordinary temperature so that the total content of compounds having a molecular weight of 200 or less is 0.28% by mass or less of the entire epoxy resin; and a pulverizing step of pulverizing the refined epoxy resin obtained by the purifying processing step under conditions so as not to make the total content of compounds having a molecular weight of 200 or less exceeding 0.3% by mass, wherein the epoxy resin which is solid at ordinary temperature prepared by the epoxy resin preparing step is mainly composed of at least one selected from oligomers represented by the following general formula (1) and oligomers represented by the following general formula (2).
    Type: Application
    Filed: February 12, 2007
    Publication date: June 14, 2007
    Applicant: JAPAN EPOXY RESINS CO., LTD.
    Inventors: Yasuyuki Murata, Atsuhito Hayakawa, Akihiro Itou
  • Publication number: 20070123684
    Abstract: An epoxy compound, represented by a general formula (I) is obtained by reacting an anthrahydroquinone compound having a following general formula (II) with epihalohydrin. (wherein R1-R10 each represent hydrogen atom or alkyl group having 1-6 carbon atoms, and n represents an integer of 0 or more, and wherein A1, A2 each represent hydrogen atom or alkali metal atom, R1-R10 each represent hydrogen atom or alkyl group having 1-6 carbon atoms.
    Type: Application
    Filed: January 26, 2007
    Publication date: May 31, 2007
    Applicant: JAPAN EPOXY RESINS CO., LTD.
    Inventors: Atsuhito Hayakawa, Akihiro Itou
  • Patent number: 7070861
    Abstract: A flame retardant epoxy resin composition containing (A) a phenolic novolak type epoxy resin including a phenolic novolak type epoxy resin of the following formula (1) and/or formula (2) in a total of at least 50 wt %: (wherein, n is 0 or a positive integer) (wherein, n is 0 or a positive integer) (B) a bisphenol type epoxy resin not containing a halogen, (C) an inorganic filler, and (D) an organic flame retardant. A prepreg and a fiber-reinforced composite using this epoxy resin composition.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 4, 2006
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Masato Taguchi, Yasushi Suzumura, Tadayoshi Saitou, Akihiro Itou