Patents by Inventor Akira Yoshino

Akira Yoshino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030203572
    Abstract: A first diffused layer and a second diffused layer are formed on the major surface of a silicon substrate. A first insulating layer, a second insulating layer or a semiconductor layer, and a third insulating layer are laminated on the major surface of the silicon substrate in the vicinity of the first diffused layer or the second diffused layer and are partially formed. A fourth insulating layer is formed as a gate insulating film. A fifth insulating layer is formed on the side walls of the second insulating layer or the semiconductor layer. In a region of most of a channel, the gate insulating film is formed and a gate electrode is formed so that it covers the gate insulating film and the laminated films. According to this structure, the operating voltage of a flash memory is reduced, the operation is easily sped up and the holding characteristic of information charge can be enhanced.
    Type: Application
    Filed: April 18, 2003
    Publication date: October 30, 2003
    Applicant: NEC Electronics Corporation
    Inventor: Akira Yoshino
  • Publication number: 20030185071
    Abstract: A first insulating layer, a second insulating layer, a third insulating layer, a first conductive layer, and an oxidation inhibitor film are successively deposited on a surface of a semiconductor substrate. After the oxidation inhibitor film and the first conductive layer are processed into strips, the assembly is thermally oxidized using the oxidation inhibitor film and the first conductive layer as a mask, thus forming thermal oxide films on first and second diffused layers. Then, a second conductive film is formed over the thermal oxide films and the first conductive layer, and then processed into a desired shape thereby to form an interconnection layer.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 2, 2003
    Applicant: NEC Electronics Corporation
    Inventor: Akira Yoshino
  • Publication number: 20030160280
    Abstract: Nonvolatile memory elements are disclosed which can have increased capacity, reduced operating voltage and/or faster operating speeds. According to one embodiment, a nonvolatile memory element can include a first diffusion layer (2) and a second diffusion layer (3) formed in a main surface of a substrate (1). A laminate film can be formed near a first diffusion layer (2) and/or a second diffusion layers (3) that includes a first insulating film (4a or 4), a second insulating film (5a or 5), and a third insulating film (6a or 6). A gate insulating film (7) can be formed a channel region and gate electrode (8) can be formed to cover gate insulating film (7) and the laminate film(s) that has a T-shape. A gate electrode (8) can have end portions that sandwich a first insulating film (4a or 4), a second insulating film (5a or 5), and a third insulating film (6a or 6) with a first diffusion layer (2) and/or second diffusion layer (3).
    Type: Application
    Filed: February 26, 2003
    Publication date: August 28, 2003
    Inventor: Akira Yoshino
  • Patent number: 6179932
    Abstract: A motor rotary shaft according to the present invention is constructed only at the surface layer of a journal portion with a hard nitride layer, so that the resultant motor rotary shaft is available at a low cost, not so heavy and excellent in durability in comparison with a case employing a hard material for the whole motor rotary shaft. Also, a method of manufacturing a motor rotary shaft according to the present invention employs fluorinating process prior to nitriding process to change a passive coat layer such as oxide layer on the surface of the journal portion to a fluoride layer, which protects the same surface. Therefore, even when there is space of time between formation of fluoride on the surface of the journal portion and nitriding process, the fluoride layer protects and keeps the surface of the journal portion in a favorable condition, resulting in that re-formation of oxide layer on that surface is prevented.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: January 30, 2001
    Assignee: Daidousanso Co., Ltd.
    Inventor: Akira Yoshino
  • Patent number: 6082136
    Abstract: There are included a fractionating tower for liquefying and separating the compressed air cooled by heat exchangers to an ultralow temperature, a liquid oxygen takeout path for guiding the liquid oxygen in the above-mentioned fractionating tower to the above-mentioned heat exchangers to gasify so as to become a gasified oxygen, and a product oxygen gas takeout path which extends from the front end of the above-mentioned liquid oxygen takeout path and increases the temperature of the above-mentioned gasified oxygen so as to obtain a product oxygen gas, the above-mentioned liquid oxygen takeout path being provided with an oxygen gas pressurizing pump, and the above-mentioned product oxygen gas takeout path on the side upstream the above-mentioned heat exchangers being provided with an expansion turbine.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: July 4, 2000
    Assignee: Daido Hoxan Inc.
    Inventor: Akira Yoshino
  • Patent number: 6020025
    Abstract: A crank shaft is constructed only at the surface layer of a journal portion with a hard nitride layer, so that the resultant crank shaft is available at a low cost, not so heavy and excellent in durability in comparison with a case employing a hard material for the whole crank shaft. Also, a method of manufacturing a crank shaft according to the present invention employs fluorinating process prior to nitriding process to change a passive coat layer, such as oxide layer on the surface of the journal portion to a fluoride layer, which protects the same surface. Therefore, even when there is space of time between formation of fluoride on the surface of the journal portion and nitriding process, the fluoride layer protects and keeps the surface of the journal portion in a favorable condition, resulting in that re-formation of oxide layer on that surface is prevented.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: February 1, 2000
    Assignee: Daidousanso Co., Ltd.
    Inventor: Akira Yoshino
  • Patent number: 5912186
    Abstract: A method for processing semiconductor materials such as a crystalline ingot or a wafer and an apparatus employed therein. An etching gas is supplied on the surface of a semiconductor material, while laser irradiation or light quantum irradiation is applied on a predetermined part of the semiconductor material surface, whereby a component of the etching gas is excited, reacted with a component of the semiconductor material and evaporated for elimination. Thereby, semiconductor materials can be processed hygienically, easily and with high precision.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: June 15, 1999
    Assignee: Daido Hoxan, Inc.
    Inventors: Akira Yoshino, Takashi Yokoyama, Yoshinori Ohmori, Kazuma Yamamoto
  • Patent number: 5764784
    Abstract: A flat casing is formed by joining a hollow cylindrical cover to a hollow cylindrical frame, and a d.c. magnetic field generating magnet in the form of a disk is fixed to the inner surface of the cover. Disposed inside the casing is a disklike diaphragm spaced apart from the lower surface of the magnet by a gap and having its outer peripheral portion fixedly held between the cover and the frame. A hollow cylindrical drive coil coaxial with the magnet is fixed to the lower surface of the diaphragm and has an axis perpendicular to the diaphragm. Stated specifically, the drive coil has an outside diameter which is at least 80% to not greater than 116% of the outside diameter of the magnet and an inside diameter which is at least 66% to not greater than 94% of the magnet outside diameter. The transducer is diminished in power consumption, has a reduced thickness and is yet highly efficient.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: June 9, 1998
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroshi Sato, Akira Yoshino
  • Patent number: 5740007
    Abstract: A CDM simulator for use with an integrated circuit having a terminal and for use with a grounding conductor, includes a cylindrical conductor, and a mercury lead switch contained in the cylindrical conductor, the mercury lead switch having a first end connected to the cylindrical conductor and a second end for connection to the terminal of the integrated circuit, and the mercury lead switch having a first length, the cylindrical conductor having an end closer to the terminal of the integrated circuit for connection to the grounding conductor in order to release electric charge from the integrated circuit to the grounding conductor, and the cylindrical conductor having a second length longer than the first length of the mercury lead switch.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: April 14, 1998
    Assignee: Hanwa Electronic Ind. Co., Ltd.
    Inventors: Toshiyuki Nakaie, Akira Yoshino, Shin Yoshida, Kenichi Sengo
  • Patent number: 5631100
    Abstract: A secondary battery is comprising an organic electrolytic solution contained in a casing and, disposed therein, a positive electrode comprised of a lithium-containing composite metal oxide as a cathode active material and a negative electrode comprised of a carbonaceous material as an anode active material, wherein the positive and negative electrodes are separated through a separator disposed therebetween and wherein the organic electrolytic solution has a water content of from 5 ppm to 450 ppm.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: May 20, 1997
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Akira Yoshino, Yumiko Takizawa, Akira Koyama, Katsuhiko Inoue, Masataka Yamashita, Yasufumi Minato, Isao Kuribayashi
  • Patent number: 5561076
    Abstract: The invention provides a method of fabricating a semiconductor device on an SOI substrate having a single crystal silicon substrate, a silicon dioxide film laid on top of the silicon substrate and a single crystal silicon layer laid on top of the silicon dioxide film. The method includes the steps of forming a single crystal silicon island composed of the single crystal silicon layer in a first region in which the semiconductor device is to be fabricated, and selectively forming a low temperature deposition silicon dioxide film in a second region in which the semiconductor device is not to be fabricated in the presence of photoresist, so that the low temperature deposition silicon dioxide film covers side surfaces of the silicon island. The second region turns into an isolation region for electrically separating adjacent semiconductor devices.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: October 1, 1996
    Assignee: NEC Corporation
    Inventor: Akira Yoshino
  • Patent number: 5521009
    Abstract: The present invention relates to an insulated wire comprising a conductor and at least two insulating layers provided on the outer periphery of the conductor. The inner insulating layer is provided directly or via another insulation on the outer periphery of the conductor and comprises a polyolefin compound containing 20 to 80 parts by weight of at least one substance selected from ethylene .alpha.-olefin copolymer, ethylene .alpha.-olefin polyene copolymer (.alpha.-olefin having the carbon numbers of C.sub.3 -C.sub.10, polyene being non-conjugated diene).
    Type: Grant
    Filed: June 24, 1994
    Date of Patent: May 28, 1996
    Assignee: Fujikura Ltd.
    Inventors: Izumi Ishikawa, Isao Takahashi, Hideo Sunazuka, Akira Yoshino, Masatake Hasegawa, Motohisa Murayama
  • Patent number: 5508106
    Abstract: The invention is composed of a non-aluminium metallic foil with a ceramic particle dotted layer formed on one side thereof is used and the non-aluminium metallic foil is wound on the peripheral surface of an inner shell of a duplex shell body in a state that the ceramic particle dotted layer is faced inwardly, wherein the circumference of the multi-layeredly wound layer is covered with an outer shell of the duplex shell body, and a space between the inner shell and the outer shell is sealed and evacuated.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: April 16, 1996
    Assignee: Daidousanso Co., Ltd.
    Inventor: Akira Yoshino
  • Patent number: 5494740
    Abstract: The invention is composed of a non-aluminium metallic foil with a ceramic particle dotted layer formed on one side thereof, the non-aluminium metallic foil is wound on the peripheral surface of an inner shell of a duplex shell body in a state that the ceramic particle dotted layer is faced inwardly; the circumference of the multi-layeredly wound layer is covered with an outer shell of the duplex shell body, and a space between the inner shell and the outer shell is sealed and evacuated.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: February 27, 1996
    Assignee: Daidousanso Co. Ltd.
    Inventor: Akira Yoshino
  • Patent number: 5460875
    Abstract: This invention allows to form a nitrided hard layer on the surface of an austenitic stainless steel screw by forming a nitrided layer thereon and to prevent causing rust on some parts such as a screw head portion which is in contact with the outside air by removing the nitrided hard layer to expose austenitic stainless steel base which has sufficient corrosion resistance. On the contrary, in a thread part and the like of the screw, the nitrided hard layer is left and to thereby improves hardness and the like to strengthen tapping functions and the like of the screw. In the method for manufacturing the austenitic stainless steel screw according to the invention, the austenitic stainless steel screw is held in a fluorine- or fluoride-containing gas atmosphere prior to nitriding to form a fluorided film on its surface and then is nitrided in that state. Accordingly, so formed nitrided hard layer becomes uniform and deep to obtain an austenitic stainless steel screw having excellent surface properties.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: October 24, 1995
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Masaaki Tahara, Haruo Senbokuya, Kenzo Kitano, Teruo Minato
  • Patent number: 5426998
    Abstract: A crank shaft is constructed only at the surface layer of a journal portion with a hard nitride layer, so that the resultant crank shaft is available at a low cost, not so heavy and excellent in durability in comparison with a case employing a hard material for the whole crank shaft. Also, a method of manufacturing a crank shaft according to the present invention employs fluorinating process prior to nitriding process to change a passive coat layer, such as oxide layer on the surface of the journal portion to a fluoride layer, which protects the same surface. Therefore, even when there is space of time between formation of fluoride on the surface of the journal portion and nitriding process, the fluoride layer protects and keeps the surface of the journal portion in a favorable condition, resulting in that re-formation of oxide layer on that surface is prevented.
    Type: Grant
    Filed: March 16, 1994
    Date of Patent: June 27, 1995
    Assignee: Daidousanso Co., Ltd.
    Inventor: Akira Yoshino
  • Patent number: 5419948
    Abstract: This invention allows the surface of an austenitic stainless steel screw surface to be formed into a hard nitrided layer so as to harden and a part such as a screw head which is in contact with outside air is removed its own ultra hard surface layer in the hard nitrided layer by scouring or the like to be rust preventive. Even if the ultra hard surface layer is thus removed, an inner hard layer in the hard nitrided layer is present beneath the surface layer to be able to maintain a hard state of the screw surface. In the method for manufacturing the austenitic stainless steel screw according to the invention, upon forming said hard nitrided layer on the screw surface by nitriding, the austenitic stainless steel screw surface is cleaned with a fluorine- or fluoride-containing gas prior to nitriding.
    Type: Grant
    Filed: June 29, 1993
    Date of Patent: May 30, 1995
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Masaaki Tahara, Haruo Senbokuya, Kenzo Kitano, Teruo Minato
  • Patent number: 5417776
    Abstract: The surface layer of a hard austenitic stainless steel screw is formed as nitrided layer and then is covered by a plating coat or a resin coat to give properties such as shortening the boring time as well as heightening the surface hardness of the screw itself.
    Type: Grant
    Filed: August 4, 1994
    Date of Patent: May 23, 1995
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Masaaki Tahara, Haruo Senbokuya, Kenzo Kitano, Teruo Minato
  • Patent number: 5401473
    Abstract: In accordance with this invention, a waste gas containing toxic NF.sub.3 gas is contacted with a honeycomb structure of a carbonaceous material to thereby convert NF.sub.3 into nontoxic CF.sub.4 and N.sub.2 gases with high efficiency.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: March 28, 1995
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Takakazu Tomoda
  • Patent number: RE34991
    Abstract: This invention provides a secondary battery in a nonaqueous type using a substance indicated in I below and/or a substance indicated in II below as an active material for either of positive and negative electrodes:I: a composite oxide possessing a layer structure and represented by the general formula:A.sub.x M.sub.y N.sub.2 O.sub.2wherein A stands for at least one alkali metal, M for a transition metal, N for at least one member selected from the group consisting of Al, In, and Sn, and x, y, and z respectively for the number falling in a specific range,II: an n-doped carbonaceous material which has a BET-method specific surface area, and a crystal thickness, Lc, in the X-ray diffraction and a true density, .rho., both having the values falling in a specific range.The secondary battery of this invention is small and light, excels in cyclicity and self-discharging property, and possesses a high energy density.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: July 4, 1995
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Akira Yoshino, Kenichi Sanechika, Takayuki Nakajima