Patents by Inventor Akitaka Shimizu

Akitaka Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150214474
    Abstract: An etching method is provided for etching a multilayer film material that includes a metal laminated film having an insulating layer arranged between a first magnetic layer and a second magnetic layer. The etching method includes an etching step of generating a plasma by supplying a first gas to a processing chamber and etching the metal laminated film using the generated plasma. The first gas is a gas containing PF3 gas.
    Type: Application
    Filed: February 9, 2015
    Publication date: July 30, 2015
    Inventors: Eiichi NISHIMURA, Akitaka SHIMIZU, Fumiko YAMASHITA
  • Publication number: 20150132970
    Abstract: An apparatus for processing reaction products that are deposited when an etching target film contained in a target object to be processed is etched is provided with: a processing chamber; a partition plate; a plasma source; a mounting table; a first processing gas supply unit; a second processing gas supply unit. The processing chamber defines a space, and the partition plate is arranged within the processing chamber and divides the space into a plasma generating space and a substrate processing space, while suppressing permeation of ions and vacuum ultraviolet rays. The plasma source generates a plasma in the plasma forming space. The mounting table is arranged in the substrate processing space to mount the target object thereon.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 14, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Eiichi Nishimura, Akitaka Shimizu, Fumiko Yamashita, Daisuke Urayama
  • Publication number: 20150132960
    Abstract: A substrate processing apparatus that can appropriately carry out desired plasma processing on a substrate. The substrate is accommodated in an accommodating chamber. An ion trap partitions the accommodating chamber into a plasma producing chamber and a substrate processing chamber. High-frequency antennas are disposed in the plasma producing chamber. A process gas is introduced into the plasma producing chamber. The substrate is mounted on a mounting stage disposed in the substrate processing chamber, and a bias voltage is applied to the mounting stage. The ion trap has grounded conductors and insulating materials covering surfaces of the conductors.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Applicants: TOKYO ELECTRON LIMITED, OSAKA UNIVERSITY
    Inventors: Eiichi Nishimura, Masato Morishima, Morihiro Takanashi, Akitaka Shimizu, Yuichi Setsuhara
  • Publication number: 20150083580
    Abstract: A method includes: etching a target layer of a target object in a processing chamber by generating a plasma of a first gas containing at least one of SF6, ClF3 and F2 supplied into the processing chamber to; and forming a protective film on the target layer by generating a plasma of a second gas containing at least one of hydrocarbon, fluorocarbon, and fluorohydrocarbon supplied into the processing chamber. In the etching, a pressure in the processing chamber is set to a first pressure and a first bias power is applied to a lower electrode. In the forming, the pressure is set to a second pressure lower than the first pressure and a second bias power higher than the first bias power is applied to the lower electrode.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akitaka SHIMIZU, Tetsuya OHISHI
  • Publication number: 20140284308
    Abstract: There are provided a plasma etching method and a plasma etching apparatus, capable of suppressing occurrence of local bias in etching rate and suppressing occurrence of charge-up damage. The plasma etching method of etching a silicon layer of a substrate to be processed using the plasma etching apparatus sets the pressure in a processing chamber to 13.3 Pa or more and applies, to a lower electrode, a first high-frequency power with a first frequency and a second high-frequency power with a second frequency that is lower than the first frequency and is a frequency of 1 MHz or lower.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 25, 2014
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOKYO ELECTRON LIMITED
    Inventors: Shoichiro MATSUYAMA, Akitaka SHIMIZU, Susumu NOGAMI, Kiyohito ITO, Tokuhisa OHIWA, Katsunori YAHASHI
  • Publication number: 20140110373
    Abstract: A method of etching a copper layer of a target object including, on the copper layer, a mask having a pattern to be transferred onto the copper layer is provided. The method includes etching the copper layer by using plasma of a first gas containing a hydrogen gas; and processing the target object by using plasma of a second gas containing a hydrogen gas and a gas (hereinafter, referred to as “deposition gas”) that is deposited on the target object. Further, the etching of the copper layer by using plasma of the first gas and the processing of the target object by using plasma of the second gas are repeated alternately.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Inventors: Eiichi Nishimura, Masato Kushibiki, Takashi Sone, Akitaka Shimizu, Fumiko Yamashita
  • Patent number: 8642136
    Abstract: A substrate processing method includes performing a deposition process of depositing a thin film on the substrate while depressurizing the inside of the processing chamber and introducing the gas thereinto; and, while the deposition process is being performed, irradiating light, which is transmitted through a monitoring window installed at the processing chamber, toward the inside of the processing chamber through the monitoring window, and monitoring a reflection light intensity of reflection light by receiving the reflection light through the monitoring window. The substrate processing method further includes measuring a temporal variation in the reflection light intensity during the deposition process and calculating a termination time of the deposition process based on a measurement value of the temporal variation; and terminating the deposition process by setting the termination time as an end point of the deposition process.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: February 4, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masato Kushibiki, Eiichi Nishimura, Akitaka Shimizu
  • Publication number: 20130295774
    Abstract: A plasma etching method performs a plasma etching on a substrate W by irradiating plasma containing charged particles and neutral particles to the substrate W. The method includes controlling a distribution of reaction amounts between the substrate W and the neutral particles in a surface of the substrate W by adjusting a temperature distribution in the surface of the substrate W supported by a support, and controlling a distribution of irradiation amounts of the charged particles in the surface of the substrate W by adjusting a gap between the substrate W supported by the support and an electrode provided so as to face the support.
    Type: Application
    Filed: March 22, 2013
    Publication date: November 7, 2013
    Inventors: Akitaka Shimizu, Masanobu Honda
  • Patent number: 8383517
    Abstract: A substrate processing method that can selectively remove deposit produced through dry etching of silicon. A substrate has a silicon base material and a hard mask that is made of a silicon nitride film and/or a silicon oxide film and formed on the silicon base material, the hard mask having an opening to which at least part of the silicon base material is exposed. A trench corresponding to the opening is formed in the silicon base material through dry etching using plasma produced from halogenated gas. After the dry etching, the substrate is heated to a temperature of not less than 200° C., and then hydrogen fluoride gas and helium gas are supplied toward the substrate.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: February 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Eiichi Nishimura, Chie Kato, Akitaka Shimizu, Hiroyuki Takahashi
  • Patent number: 8298957
    Abstract: The present invention is a plasma etching method comprising: a cleaning step (a) in which a cleaning gas is supplied into a processing vessel and the cleaning gas is made plasma, so that a deposit adhering to an inside of the processing vessel is removed by means of the plasma; a film depositing step (b), succeeding the cleaning step (a), in which a film depositing gas containing carbon and fluorine is supplied into the processing vessel and the film depositing gas is made plasma, so that a film containing carbon and fluorine is deposited on the inside of the processing vessel by means of the plasma; an etching step (c), succeeding the film depositing step (b), in which a substrate is placed on a stage inside the processing vessel, and an etching gas is supplied into the processing vessel and the etching gas is made plasma, so that the substrate is etched by means of the plasma; and an unloading step (d), succeeding the etching step (c), in which the substrate is unloaded from the processing vessel; wherein,
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: October 30, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yosuke Sakao, Kensuke Kamiutanai, Akitaka Shimizu
  • Publication number: 20120247670
    Abstract: A substrate cleaning apparatus includes a supporting unit, provided in a processing chamber having a gas exhaust port, for supporting a substrate; one or more nozzle units, each for ejecting gas clusters to a peripheral portion of the substrate supported by the supporting unit to remove unnecessary substances from the peripheral portion; and a moving mechanism for changing relative positions of the supporting unit and the nozzle unit during ejecting the gas clusters. Each nozzle unit discharges a cleaning gas having a pressure higher than that in the processing chamber so that the cleaning gas is adiabatically expanded to form aggregates of atoms and/or molecules.
    Type: Application
    Filed: March 26, 2012
    Publication date: October 4, 2012
    Applicants: IWATANI CORPORATION, TOKYO ELECTRON LIMITED
    Inventors: Kazuya DOBASHI, Kensuke INAI, Akitaka SHIMIZU, Kenta YASUDA, Yu YOSHINO, Toshihiro AIDA, Takehiko SENOO
  • Patent number: 8251011
    Abstract: An apparatus, which performs a plasma process on a target substrate by using plasma, includes first and second electrodes in a process chamber to oppose each other. An RF field, which turns a process gas into plasma by excitation, is formed between the first and second electrodes. An RF power supply, which supplies RF power, is connected to the first or second electrode through a matching circuit. The matching circuit automatically performs input impedance matching relative to the RF power. A variable impedance setting section is connected to a predetermined member, which is electrically coupled with the plasma, through an interconnection. The impedance setting section sets a backward-direction impedance against an RF component input to the predetermined member from the plasma. A controller supplies a control signal concerning a preset value of the backward-direction impedance to the impedance setting section.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: August 28, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yohei Yamazawa, Manabu Iwata, Chishio Koshimizu, Fumihiko Higuchi, Akitaka Shimizu, Asao Yamashita, Nobuhiro Iwama, Tsutomu Higashiura, DongSheng Zhang, Michiko Nakaya, Norikazu Murakami
  • Patent number: 8236109
    Abstract: A method for cleaning a component in a substrate processing apparatus including a processing chamber, foreign materials being attached to the component, at least a part of the component being exposed inside the processing chamber, and the substrate processing apparatus being adapted to load and unload a foreign material adsorbing member into and from the processing chamber. The method includes loading the foreign material adsorbing member into the processing chamber; generating a plasma nearer the component than the foreign material adsorbing member; extinguishing the plasma; and unloading the foreign material adsorbing member from the processing chamber, wherein the generation and the extinguishment of the plasma are repeated alternately and the foreign material adsorbing member has a positive potential at least during the extinguishment of the plasma.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 7, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Tsuyoshi Moriya, Akitaka Shimizu
  • Publication number: 20120037314
    Abstract: A substrate processing apparatus that enables abnormal electrical discharges and metal contamination to be prevented from occurring. A processing chamber is configured to house and carry out predetermined plasma processing on a substrate. A lower electrode is disposed on a bottom portion of the processing chamber and has the substrate mounted thereon. An upper electrode is disposed in a ceiling portion of the processing chamber. A side wall component covering a side wall of the processing chamber faces onto a processing space between the upper electrode and the lower electrode. The side wall component has at least one electrode layer to which a DC voltage is applied. An insulating portion made of an insulating material is present at least between the electrode layer and the processing space and covers the electrode layer. The insulating portion is formed by thermally spraying the insulating material.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 16, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shosuke ENDOH, Tsuyoshi MORIYA, Akitaka SHIMIZU
  • Publication number: 20110220609
    Abstract: There are provided a plasma etching method and a plasma etching apparatus capable of independently controlling distributions of line widths and heights of lines in a surface of a wafer. The plasma etching method for performing a plasma etching on a substrate W by irradiating plasma containing charged particles and neutral particles to the substrate W includes controlling a distribution of reaction amounts between the substrate W and the neutral particles in a surface of the substrate W by adjusting a temperature distribution in the surface of the substrate W supported by a support 105, and controlling a distribution of irradiation amounts of the charged particles in the surface of the substrate W by adjusting a gap between the substrate W supported by the support 105 and an electrode 120 provided so as to face the support 105.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hidetami Yaegashi, Masanobu Honda, Akitaka Shimizu
  • Publication number: 20110217796
    Abstract: An etching method capable of controlling the film thickness of a hard mask layer uniformly is provided. A plasma etching is performed on a native oxide film by using an etching gas containing, for example, CF4 and Ar while a thickness of a silicon nitride film is being monitored and the etching is finished when the thickness of the silicon nitride film reaches a predetermined value. Then, a plasma etching is performed on a silicon substrate by employing an etching gas containing, for example, Cl2, HBr and Ar and using the silicon nitride film as a mask while a depth of a trench is being monitored and the etching is finished when the depth of the trench reaches a specified value.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: TOKYO ELECTRON LIMTED
    Inventors: Susumu Saito, Akitaka Shimizu
  • Publication number: 20110155322
    Abstract: A plasma processing apparatus includes a processing chamber in which a target substrate is processed; an application electrode and a facing electrode provided to face each other in the processing chamber, a plasma generation space being formed between the application electrode and the facing electrode; and an RF power supply connected to the application electrode, an RF power being supplied from the RF power supply to the application electrode. At least one of the application electrode and the facing electrode includes a base formed of a metal, and a dielectric body inserted into the base, one or more metal plate electrodes being buried in the dielectric body.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinji HIMORI, Daisuke Hayashi, Akitaka Shimizu
  • Patent number: 7897498
    Abstract: The present invention is a method of manufacturing a semiconductor device from a layered body including: a semiconductor substrate; a high dielectric film formed on the semiconductor substrate; and an SiC-based film formed on a position upper than the high dielectric film, the SiC-based film having an anti-reflective function and a hardmask function. The present invention comprises a plasma-processing step for plasma-processing the SiC-based film and the high dielectric film to modify the SiC-based film and the high dielectric film by an action of a plasma; and a cleaning step for wet-cleaning the SiC-based film and the high dielectric film modified in the plasma-processing step to collectively remove the SiC-based film and the high dielectric film.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: March 1, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Glenn Gale, Yoshihiro Hirota, Yusuke Muraki, Genji Nakamura, Masato Kushibiki, Naoki Shindo, Akitaka Shimizu, Shigeo Ashigaki, Yoshihiro Kato
  • Patent number: 7871532
    Abstract: A plasma processing method for performing a plasma process on a target object placed in a chamber includes a first plasma process of turning a gas containing at least a halogen element into plasma to generate first plasma, thereby processing the target object; a second plasma process, subsequent to the first plasma process, of supplying a gas containing oxygen into the chamber to generate second plasma, thereby processing the chamber and the target object; and a third plasma process, subsequent to the second plasma process, of turning a gas containing at least fluorine into plasma to generate third plasma, thereby processing the target object.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: January 18, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akitaka Shimizu, Kosuke Ogasawara, Susumu Saito
  • Patent number: RE43652
    Abstract: In a substrate processing control method, a first process acquires a first-reflectance-spectrum of a beam reflected from the first-fine-structure and a second-reflectance-spectrum of a beam reflected from the second-fine-structure for each of varying-pattern-dimensions of the first-fine-structure when the pattern-dimension of the first-fine-structure is varied. A second process acquires reference-spectrum-data for each of the varying-pattern-dimensions of the first-fine-structure by overlapping the first-reflectance-spectrum with the second-reflectance-spectrum. A third process actually measures beams reflected from the first and the second-fine-structure, respectively, after irradiating light beam on to the substrate and acquiring reflectance-spectrums of the actual-measured beams as actual-measured spectrum data.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 11, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Susumu Saito, Akitaka Shimizu