Patents by Inventor Alan M. Myers
Alan M. Myers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220157619Abstract: Embodiments of the invention include methods of forming a textile patterned hardmask. In an embodiment, a first hardmask and a second hardmask are formed over a top surface of an interconnect layer in an alternating pattern. A sacrificial cross-grating may then be formed over the first and second hardmasks. In an embodiment, portions of the first hardmask that are not covered by the sacrificial cross-grating are removed to form first openings and a third hardmask is disposed into the first openings. Embodiments may then include etching through portions of the second hardmask that are not covered by the sacrificial cross-grating to form second openings. The second openings may be filled with a fourth hardmask. According to an embodiment, the first, second, third, and fourth hardmasks are etch selective to each other. In an embodiment the sacrificial cross-grating may then be removed.Type: ApplicationFiled: February 3, 2022Publication date: May 19, 2022Inventors: Kevin LIN, Robert Lindsey BRISTOL, Alan M. MYERS
-
Patent number: 11276581Abstract: Embodiments of the invention include methods of forming a textile patterned hardmask. In an embodiment, a first hardmask and a second hardmask are formed over a top surface of an interconnect layer in an alternating pattern. A sacrificial cross-grating may then be formed over the first and second hardmasks. In an embodiment, portions of the first hardmask that are not covered by the sacrificial cross-grating are removed to form first openings and a third hardmask is disposed into the first openings. Embodiments may then include etching through portions of the second hardmask that are not covered by the sacrificial cross-grating to form second openings. The second openings may be filled with a fourth hardmask. According to an embodiment, the first, second, third, and fourth hardmasks are etch selective to each other. In an embodiment the sacrificial cross-grating may then be removed.Type: GrantFiled: June 7, 2019Date of Patent: March 15, 2022Assignee: Intel CorporationInventors: Kevin Lin, Robert Lindsey Bristol, Alan M. Myers
-
Publication number: 20190287813Abstract: Embodiments of the invention include methods of forming a textile patterned hardmask. In an embodiment, a first hardmask and a second hardmask are formed over a top surface of an interconnect layer in an alternating pattern. A sacrificial cross-grating may then be formed over the first and second hardmasks. In an embodiment, portions of the first hardmask that are not covered by the sacrificial cross-grating are removed to form first openings and a third hardmask is disposed into the first openings. Embodiments may then include etching through portions of the second hardmask that are not covered by the sacrificial cross-grating to form second openings. The second openings may be filled with a fourth hardmask. According to an embodiment, the first, second, third, and fourth hardmasks are etch selective to each other. In an embodiment the sacrificial cross-grating may then be removed.Type: ApplicationFiled: June 7, 2019Publication date: September 19, 2019Inventors: Kevin LIN, Robert Lindsey BRISTOL, Alan M. MYERS
-
Patent number: 10366903Abstract: Embodiments of the invention include methods of forming a textile patterned hardmask. In an embodiment, a first hardmask and a second hardmask are formed over a top surface of an interconnect layer in an alternating pattern. A sacrificial cross-grating may then be formed over the first and second hardmasks. In an embodiment, portions of the first hardmask that are not covered by the sacrificial cross-grating are removed to form first openings and a third hardmask is disposed into the first openings. Embodiments may then include etching through portions of the second hardmask that are not covered by the sacrificial cross-grating to form second openings. The second openings may be filled with a fourth hardmask. According to an embodiment, the first, second, third, and fourth hardmasks are etch selective to each other. In an embodiment the sacrificial cross-grating may then be removed.Type: GrantFiled: June 26, 2015Date of Patent: July 30, 2019Assignee: Intel CorporationInventors: Kevin Lin, Robert Lindsey Bristol, Alan M. Myers
-
Patent number: 10147639Abstract: A method including forming a sacrificial material between metal lines of an integrated circuit structure; forming a mask on the sacrificial material; and after forming the mask, removing the sacrificial material to leave a void between the metal lines. An apparatus including an integrated circuit substrate; a first metallization level on the substrate; a second metallization; and a mask disposed between the first metallization level and the second metallization level, the mask including a dielectric material having a porosity select to allow mass transport therethrough, wherein each of the first metallization level and the second metallization level comprises a plurality of metal lines and a portion of adjacent metal lines of at least one of the first metallization level and the second metallization level are separated by voids.Type: GrantFiled: December 22, 2014Date of Patent: December 4, 2018Assignee: Intel CorporationInventors: Kanwal Jit Singh, Alan M. Myers
-
Patent number: 10032643Abstract: Interconnect structures having alternating dielectric caps and an etchstop liner for semiconductor devices and methods for manufacturing such devices are described. According to an embodiment, an interconnect structure may include an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD. The interconnect structure may also include one or more first interconnect lines in the ILD. A first dielectric cap may be positioned above a top surface of each of the first interconnect lines. Additional embodiments include one or more second interconnect lines in the ILD that are arranged in an alternating pattern with the first interconnect lines. A second dielectric cap may be formed above a top surface of each of the second interconnect lines. Embodiments may also include an etchstop liner that is formed over top surfaces of the first dielectric caps.Type: GrantFiled: December 22, 2014Date of Patent: July 24, 2018Assignee: Intel CorporationInventors: Jasmeet S. Chawla, Ruth A. Brain, Richard E. Schenker, Kanwal Jit Singh, Alan M. Myers
-
Publication number: 20180158694Abstract: Embodiments of the invention include methods of forming a textile patterned hardmask. In an embodiment, a first hardmask and a second hardmask are formed over a top surface of an interconnect layer in an alternating pattern. A sacrificial cross-grating may then be formed over the first and second hardmasks. In an embodiment, portions of the first hardmask that are not covered by the sacrificial cross-grating are removed to form first openings and a third hardmask is disposed into the first openings. Embodiments may then include etching through portions of the second hardmask that are not covered by the sacrificial cross-grating to form second openings. The second openings may be filled with a fourth hardmask. According to an embodiment, the first, second, third, and fourth hardmasks are etch selective to each other. In an embodiment the sacrificial cross-grating may then be removed.Type: ApplicationFiled: June 26, 2015Publication date: June 7, 2018Inventors: Kevin LIN, Robert Lindsey BRISTOL, Alan M. MYERS
-
Patent number: 9887161Abstract: Techniques are disclosed for forming interconnects in porous dielectric materials. In accordance with some embodiments, the porosity of a host dielectric layer may be reduced temporarily by stuffing its pores with a sacrificial pore-stuffing material, such as titanium nitride (TiN), titanium dioxide (TiO2), or other suitable sacrificial material having a high etch selectivity compared to the metallization and dielectric material of the interconnect. After interconnect formation within the stuffed dielectric layer, the sacrificial pore-stuffing material can be removed from the pores of the host dielectric. In some cases, removal and curing can be performed with minimal or otherwise negligible effect on the dielectric constant (?-value), leakage performance, and/or time-dependent dielectric breakdown (TDDB) properties of the host dielectric layer.Type: GrantFiled: August 1, 2016Date of Patent: February 6, 2018Assignee: INTEL CORPORATIONInventors: Christopher J. Jezewski, David J. Michalak, Kanwal Jit Singh, Alan M. Myers
-
Publication number: 20170250104Abstract: A method including forming a sacrificial material between metal lines of an integrated circuit structure; forming a mask on the sacrificial material; and after forming the mask, removing the sacrificial material to leave a void between the metal lines. An apparatus including an integrated circuit substrate; a first metallization level on the substrate; a second metallization; and a mask disposed between the first metallization level and the second metallization level, the mask including a dielectric material having a porosity select to allow mass transport therethrough, wherein each of the first metallization level and the second metallization level comprises a plurality of metal lines and a portion of adjacent metal lines of at least one of the first metallization level and the second metallization level are separated by voids.Type: ApplicationFiled: December 22, 2014Publication date: August 31, 2017Inventors: Kanwal Jit SINGH, Alan M. MYERS
-
Patent number: 9553018Abstract: Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.Type: GrantFiled: December 10, 2015Date of Patent: January 24, 2017Assignee: Intel CorporationInventors: Robert L. Bristol, Kevin Lin, Kanwal Jit Singh, Alan M. Myers, Richard E. Schenker
-
Patent number: 9548269Abstract: Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.Type: GrantFiled: November 3, 2015Date of Patent: January 17, 2017Assignee: Intel CorporationInventors: Alan M. Myers, Kanwal Jit Singh, Robert L. Bristol, Jasmeet S. Chawla
-
Publication number: 20160343665Abstract: Techniques are disclosed for forming interconnects in porous dielectric materials. In accordance with some embodiments, the porosity of a host dielectric layer may be reduced temporarily by stuffing its pores with a sacrificial pore-stuffing material, such as titanium nitride (TiN), titanium dioxide (TiO2), or other suitable sacrificial material having a high etch selectivity compared to the metallization and dielectric material of the interconnect. After interconnect formation within the stuffed dielectric layer, the sacrificial pore-stuffing material can be removed from the pores of the host dielectric. In some cases, removal and curing can be performed with minimal or otherwise negligible effect on the dielectric constant (?-value), leakage performance, and/or time-dependent dielectric breakdown (TDDB) properties of the host dielectric layer.Type: ApplicationFiled: August 1, 2016Publication date: November 24, 2016Applicant: INTEL CORPORATIONInventors: CHRISTOPHER J. JEZEWSKI, DAVID J. MICHALAK, KANWAL JIT SINGH, ALAN M. MYERS
-
Patent number: 9406615Abstract: Techniques are disclosed for forming interconnects in porous dielectric materials. In accordance with some embodiments, the porosity of a host dielectric layer may be reduced temporarily by stuffing its pores with a sacrificial pore-stuffing material, such as titanium nitride (TiN), titanium dioxide (TiO2), or other suitable sacrificial material having a high etch selectivity compared to the metallization and dielectric material of the interconnect. After interconnect formation within the stuffed dielectric layer, the sacrificial pore-stuffing material can be removed from the pores of the host dielectric. In some cases, removal and curing can be performed with minimal or otherwise negligible effect on the dielectric constant (?-value), leakage performance, and/or time-dependent dielectric breakdown (TDDB) properties of the host dielectric layer.Type: GrantFiled: December 24, 2013Date of Patent: August 2, 2016Assignee: INTEL CORPORATIONInventors: Christopher J. Jezewski, David J. Michalak, Kanwal Jit Singh, Alan M. Myers
-
Patent number: 9406512Abstract: Self-aligned via patterning with multi-colored photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer including a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. A second layer of the interconnect structure is disposed above the first layer of the interconnect structure, the second layer including a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.Type: GrantFiled: May 24, 2015Date of Patent: August 2, 2016Assignee: Intel CorporationInventors: Robert L. Bristol, James M. Blackwell, Alan M. Myers, Kanwal Jit Singh
-
Patent number: 9379010Abstract: Processes for forming interconnection layers having tight pitch interconnect structures within a dielectric layer, wherein trenches and vias used to form interconnect structures have relatively low aspect ratios prior to metallization. The low aspect ratios may reduce or substantially eliminate the potential of voids forming within the metallization material when it is deposited. Embodiments herein may achieve such relatively low aspect ratios through processes that allow for the removal of structures, which are utilized to form the trenches and the vias, prior to metallization.Type: GrantFiled: January 24, 2014Date of Patent: June 28, 2016Assignee: Intel CorporationInventors: Christopher J. Jezewski, Jasmeet S. Chawla, Kanwal Jit Singh, Alan M. Myers, Elliot N. Tan, Richard E. Schenker
-
Publication number: 20160126184Abstract: Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.Type: ApplicationFiled: November 3, 2015Publication date: May 5, 2016Inventors: Alan M. Myers, Kanwal Jit Singh, Robert L. Bristol, Jasmeet S. Chawla
-
Publication number: 20160104642Abstract: Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.Type: ApplicationFiled: December 10, 2015Publication date: April 14, 2016Inventors: Robert L. Bristol, Kevin Lin, Kanwal Jit Singh, Alan M. Myers, Richard E. Schenker
-
Patent number: 9236342Abstract: Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.Type: GrantFiled: December 18, 2013Date of Patent: January 12, 2016Assignee: Intel CorporationInventors: Robert L. Bristol, Kevin Lin, Kanwal Jit Singh, Alan M. Myers, Richard E. Schenker
-
Patent number: 9209077Abstract: Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.Type: GrantFiled: December 20, 2013Date of Patent: December 8, 2015Assignee: Intel CorporationInventors: Alan M. Myers, Kanwal Jit Singh, Robert L. Bristol, Jasmeet S. Chawla
-
Publication number: 20150255284Abstract: Self-aligned via patterning with multi-colored photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer including a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. A second layer of the interconnect structure is disposed above the first layer of the interconnect structure, the second layer including a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.Type: ApplicationFiled: May 24, 2015Publication date: September 10, 2015Inventors: Robert L. Bristol, James M. Blackwell, Alan M. Myers, Kanwal Jit Singh